基于空间注意力深度残差网络的细粒度电磁频谱地图构建方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN91

基金项目:

国家自然科学基金(62071481、61501471)


A fine-grained spectral map construction method based on spatially self-attention deep residual network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前,电磁频谱资源的高效利用是无线通信领域的热点问题,而电磁频谱地图(electromagnetic spectrum map, EMSM)能够可视化展示某任务区域内的频谱使用情况,为无线网络优化工作提供有效支持。针对场景复杂且空间点位监测数据有限条件下生成细粒度EMSM难度大的问题,提出了一种增强空间注意力特征块(enhanced spatial-attention feature block, ES-AFB)的改进深度残差网络(deep residual networks, DRN)模型,借鉴图像超分辨率思想并利用EMSM的强空间特性,设计深度残差网络提取EMSM的相关性和频谱特征,利用增强空间注意力特征块挖掘粗粒度EMSM的内在隐含空间特征,再通过网络的多层上采样模块重构数据尺寸,从而达到更好的细粒度图像恢复效果,能够利用有限的粗粒度监测数据生成高质量的细粒度EMSM。仿真实验结果验证了算法的有效性,利用实测数据生成EMSM的均方根误差不超过3%。

    Abstract:

    The efficient utilization of electromagnetic spectrum resources has become a significant concern in the domain of wireless communications, with the electromagnetic spectrum map (EMSM) playing a crucial role in visually representing spectrum usage within a specific task area and providing valuable support for the optimization of wireless networks. To address the challenges associated with generating fine-grained EMSMs under conditions of complex scenes and limited spatial point monitoring data, an improved deep residual network (DRN) model, enhanced with a spatial attention feature block (ES-AFB), has been proposed. This model draws inspiration from image super-resolution techniques and leverages the strong spatial characteristics of EMSMs to design a deep residual network capable of extracting the correlation and spectral features of EMSMs. The enhanced spatial attention feature block is utilized to mine the intrinsic implicit spatial features of coarse-grained EMSMs. Subsequently, the data size is reconfigured through the network's multilayer up-sampling module, enabling the achievement of a more effective fine-grained image restoration. This approach allows for the generation of high-quality fine-grained EMSMs using limited coarse-grained monitoring data. The effectiveness of the algorithm has been validated through simulation experiments, with the root-mean-square error of the EMSMs generated from actual data being found to be no more than 3%.

    参考文献
    相似文献
    引证文献
引用本文

谢佳炜,余志勇,张羽洁,等. 基于空间注意力深度残差网络的细粒度电磁频谱地图构建方法[J]. 科学技术与工程, 2025, 25(14): 5905-5912.
Xie Jiawei, Yu Zhiyong, Zhang Yujie, et al. A fine-grained spectral map construction method based on spatially self-attention deep residual network[J]. Science Technology and Engineering,2025,25(14):5905-5912.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-22
  • 最后修改日期:2025-03-05
  • 录用日期:2024-11-17
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知