基于GWO-RBF神经网络的车用燃料电池剩余使用寿命预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM911.42

基金项目:

中国中车股份有限公司重大科研项目(2023CYA271);国家重点研发计划项目(2023YFB4301603);四川省自然科学基金项目(2025ZNSFSC0427)


Remaining Useful Life Prediction of Vehicular Fuel Cells Based on GWO-RBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究车用质子交换膜燃料电池的预测和健康管理问题,本文提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的剩余使用寿命进行预测。首先,通过对初始时刻燃料电池极化曲线的分析,构建以相对功率损耗率为健康指标的计算方法,并采用灰色关联度分析方法验证其可行性。然后,应用GWO算法优化的RBF神经网络预测车用质子交换膜燃料电池的剩余使用寿命。最后,采用两组数据集对提出的方法进行了验证分析。结果表明:与其他方法相比,提出的基于GWO-RBF方法的平均绝对百分比误差、均方根误差最小,决定系数最大,相对误差小于1%。可见本文提出的方法能够以较少的数据集、较高的精度预测车用质子交换膜燃料电池的剩余使用寿命。

    Abstract:

    In order to study the prediction and health management of proton exchange membrane fuel cells (PEMFCs) for vehicles, a method combining grey wolf optimizer (GWO) and radial basis function (RBF) neural network with relative power loss rate as a health indicator was proposed to predict the remaining useful life of vehicular PEMFCs. Firstly, by analyzing the polarization curve of the fuel cell at the initial moment, a calculation method based on the relative power loss rate as a health indicator was constructed, and its feasibility was verified using the grey correlation analysis method. Then, the RBF neural network optimized by GWO algorithm was applied to predict the remaining useful life of vehicular PEMFCs. Finally, the proposed method was validated using two datasets. The results show that compared with other methods, the GWO-RBF method proposed in this paper has the smallest average absolute percentage error and root mean square error, the largest coefficient of determination, and a relative error of less than 1%. It is concluded that the proposed method can be used to predict the remaining useful life of vehicular PEMFCs with fewer datasets and better accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王文,张晗,张擘,等. 基于GWO-RBF神经网络的车用燃料电池剩余使用寿命预测[J]. 科学技术与工程, 2025, 25(14): 5897-5904.
Wang Wen, Zhang Han, Zhang Bo, et al. Remaining Useful Life Prediction of Vehicular Fuel Cells Based on GWO-RBF Neural Network[J]. Science Technology and Engineering,2025,25(14):5897-5904.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-10
  • 最后修改日期:2025-02-28
  • 录用日期:2024-11-17
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知