改进星鸦优化算法用于配电网多目标动态重构
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM734

基金项目:

河南省科技攻关项目(232102211050、222102320298)


Improved Nutcracker Optimization Algorithm for Multi-objective Dynamic Reconfiguration of Distribution Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风光荷时变的配电网动态重构问题,提出一种Kmeans++融合PAM(Kmeans++-Partitioning Around Medoid)聚类方法,按时间顺序划分日等值负荷曲线。以综合成本、电压偏移和负荷均衡度为优化目标构建配电网多目标动态重构模型。提出一种改进星鸦优化算法(improved Nutcracker optimization algorithm,INOA)提升模型求解效率,利用Tent映射+准反射学习提供优质初始种群,引入动态适应度-距离平衡选择方法和切线飞行策略提高全局搜索能力,加入柯西-高斯变异扰动克服局部最优。基于IEEE33节点系统进行对比分析,结果表明所提方法能够实现负荷最优划分并对重构模型进行高效求解。

    Abstract:

    A novel clustering approach combining Kmeans++ and PAM is introduced to segment the daily load curve chronologically for the dynamic reconfiguration of distribution networks incorporating time-varying wind solar power and loads. Multi-objective dynamic reconfiguration model of distribution network based on the optimal objectives of comprehensive cost, voltage offset and load balance. To enhance the computational efficiency of the model, an improved Nutcracker optimization algorithm (INOA) was proposed, which used Tent mapping + quasi-reflection learning to provide high-quality initial population. Dynamic fitness-distance balance selection method and tangential flight strategy are introduced to enhance the global search capability. The Cauchy-Gaussian variation perturbation is incorporated to augment the algorithm"s capability to escape from local optima. Using the IEEE 33-node system as a basis, the outcomes indicate that the suggested approach effectively achieves optimal load distribution and efficiently addresses the restructured model.

    参考文献
    相似文献
    引证文献
引用本文

吴艳敏,安艳军,王璐,等. 改进星鸦优化算法用于配电网多目标动态重构[J]. 科学技术与工程, 2025, 25(14): 5886-5896.
Wu Yanmin, An Yanjun, Wang Lu, et al. Improved Nutcracker Optimization Algorithm for Multi-objective Dynamic Reconfiguration of Distribution Network[J]. Science Technology and Engineering,2025,25(14):5886-5896.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:2025-04-30
  • 录用日期:2024-11-17
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知