基于虚拟同步发电机参数优化的模糊自适应控制策略
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM743

基金项目:

新疆维吾尔自治区自然科学基金资助项目(2022D01C664)


Fuzzy adaptive control strategy based on parameter optimization of virtual synchronous generator
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于虚拟同步发电机(virtual synchronous generator, VSG)控制的并网逆变器存在的抗扰能力差和动态响应时间长的问题,提出了一种VSG的改进模糊自适应控制策略。首先,建立VSG小信号模型,分析虚拟惯量与阻尼系数对系统动态响应的影响。确定两参数取值范围并利用麻雀搜索算法对自适应策略中惯量和阻尼的初始值寻优。其次,分析系统受扰动后的角频率变化曲线,细化设计模糊规则。最后,在MATLAB/Simulink中搭建单机VSG模型,将不同控制策略进行对比。结果表明:在指令功率和负载功率突变时,本文所提模糊自适应策略不仅提高了系统响应速度,且抗扰动能力强。证明了本文策略的有效性。

    Abstract:

    Aiming at the problems of poor disturbance immunity and long dynamic response time of the grid-connected inverter based on virtual synchronous generator (VSG) control, an improved fuzzy adaptive control strategy for VSG is proposed. First, a small-signal model of VSG is established to analyze the effects of virtual inertia and damping coefficient on the dynamic response of the system. Determine the value range of the two parameters and use the sparrow search algorithm to optimize the initial values of inertia and damping in the adaptive strategy. Secondly, the angular frequency change curve of the system after perturbation is analyzed to refine the design fuzzy rules. Finally, a stand-alone VSG model is built in MATLAB/Simulink to compare the different control strategies. The results show that the fuzzy adaptive strategy proposed in this paper not only improves the response speed of the system, but also has a strong anti-disturbance ability when the command power and load power change suddenly. The effectiveness of this paper"s strategy is proved.

    参考文献
    相似文献
    引证文献
引用本文

冯云龙,希望·阿不都瓦依提. 基于虚拟同步发电机参数优化的模糊自适应控制策略[J]. 科学技术与工程, 2025, 25(14): 5877-5885.
Feng Yunlong, Xiwang Abuduwayiti. Fuzzy adaptive control strategy based on parameter optimization of virtual synchronous generator[J]. Science Technology and Engineering,2025,25(14):5877-5885.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-20
  • 最后修改日期:2025-02-26
  • 录用日期:2024-10-29
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知