基于改进YOLOv8n的道路裂缝检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U418.6

基金项目:

国家自然科学基金 (51768071),基于沥青路面病害数据及深度学习的病害智慧识别系统研究(JCZXXJAU2023001)


A Lightweight Road Damage Detection Algorithm Based on YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂场景下道路裂缝检测模型占用内存空间大、计算复杂度高和检测速度难以满足实时目标检测要求等问题,通过引入轻量化模块和注意力机制,以及改进传统的特征融合金字塔,设计了一种高效且精准的道路裂缝检测算法FCG-YOLO。首先,算法将PConv融入到YOLOv8n的残差计算模块中提出了改进的C2f_Faster结构以降低模型参数量和减少计算复杂度。其次,为了提高检测准确率,在骨干部分引入了全局注意力机制(GAM),并改进特征融合金字塔SPPF为SPPFCSPC模块,增强了模型对路面裂缝的特征表达与特征融合能力。最后,通过消融实验验证了各模块对算法性能的影响,找到了兼具轻量性与准确性的模型配置。最后结合实际应用场景,探究了算法的鲁棒性与泛化性。FCG-YOLO在检测效率上表现出色,验证集上的检测精度mAP50与mAP50-95分别达到了90.3%、74.4%,且每秒检测速度达到345帧。可见具备较高的检测效率与良好的实际应用价值。

    Abstract:

    Addressing challenges such as large memory footprint, high computational complexity, and insufficient real-time detection speed in road crack detection models for complex scenarios, a highly efficient and precise algorithm named FCG-YOLO is proposed in this study. Lightweight modules and attention mechanisms are integrated, and traditional feature fusion pyramids are enhanced.The algorithm incorporates PConv into the residual calculation module of YOLOv8n to introduce the improved C2f_Faster structure, thereby reducing model parameters and computational complexity. To enhance detection accuracy, a global attention mechanism (GAM) is introduced into the backbone, and the Feature Fusion Pyramid SPPF is improved to SPPFCSPC module, enhancing the model"s ability to represent and fuse features of road cracks.The impact of each module on algorithm performance is verified through ablation experiments, identifying a lightweight and accurate model configuration. Furthermore, the robustness and generalization of the algorithm are explored in practical application scenarios.FCG-YOLO demonstrates outstanding detection efficiency, achieving a detection accuracy of 90.3% mAP50 and 74.4% mAP50-95 on the validation set, with a detection speed of 345 frames per second. These results highlight its high detection efficiency and significant practical value.

    参考文献
    相似文献
    引证文献
引用本文

吐尔逊·买买提,邱建卓,刘健,等. 基于改进YOLOv8n的道路裂缝检测算法[J]. 科学技术与工程, 2025, 25(14): 6044-6053.
Tuerxun Maimaiti, Qiu Jianzhuo, Liu Jian, et al. A Lightweight Road Damage Detection Algorithm Based on YOLOv8n[J]. Science Technology and Engineering,2025,25(14):6044-6053.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-13
  • 最后修改日期:2025-02-25
  • 录用日期:2024-11-17
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知