TBM掘进中围岩分类预测的堆叠集成学习方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU456

基金项目:


Stacked ensemble learning method for TBM surrounding rock classification prediction of surrounding rock in TBM excavation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器学习的数据驱动方法为隧道掘进机(TBM)施工智能化赋能,对于优化掘进工艺、提高掘进安全性和降低人工成本至关重要。本文针对TBM运行数据噪声多、参数冗余及有效特征提取困难的难题,运用数据驱动的机器学习方法,挖掘数据蕴含的机-土复杂相互作用,实现TBM围岩岩体分类预测。首先,对于TBM掘进过程中产生的大量运行数据,通过核密度估计(KDE)对典型7个掘进参数曲线进行特征提取,获取稳定掘进阶段TBM关键运行参数最大概率值。然后,面向实际场景TBM运行数据,提出围岩分类堆叠集成学习算法,通过k-fold交叉验证进一步优化算法,利用基分类器和元分类器两层学习框架挖掘数据中的复杂关系。最后,采用5868个TBM掘进段的数据集对该算法的有效性进行验证。结果表明,四分类问题预测的平均F1达到0.705,二分类问题预测的平均F1达到0.797,其预测效果均优于所选的四种基分类器。

    Abstract:

    The data-driven approach of machine learning enables the intelligent construction of tunnel boring machines (TBM), which is crucial for optimizing the tunneling process, improving the safety of tunneling and reducing labor costs. In this paper, to solve the problems of excessive noise, redundant parameters and difficult effective feature extraction in TBM operation data, a data-driven machine learning method is used to mine the complex machine-soil interaction contained in the data and realize the classification and prediction of TBM surrounding rock mass. Firstly, for the large amount of operation data generated during TBM excavation, feature extraction was carried out on the typical 7 excavation parameter curves by kernel density estimation (KDE) to obtain the maximum probability values of TBM key operation parameters in the stable excavation stage. Then, based on the actual TBM operation data, an integrated learning algorithm for surrounding rock classification stacking is proposed. The algorithm is further optimized through k-fold cross-validation, and the complex relationships in the data are mined by using the two-layer learning framework of base classifier and meta-classifier. Finally, a data set of 5868 TBM segments is used to verify the effectiveness of the proposed algorithm. The results show that the average F1 of the four-classification problem is 0.705, and the average F1 of the two-classification problem is 0.797, which are better than the four selected base classifiers.

    参考文献
    相似文献
    引证文献
引用本文

祝贺超,姚昌瑞,邵永平,等. TBM掘进中围岩分类预测的堆叠集成学习方法[J]. 科学技术与工程, 2025, 25(14): 6016-6022.
Zhu Hechao, Yao Changrui, Shao Yongping, et al. Stacked ensemble learning method for TBM surrounding rock classification prediction of surrounding rock in TBM excavation[J]. Science Technology and Engineering,2025,25(14):6016-6022.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2025-04-30
  • 录用日期:2024-11-17
  • 在线发布日期: 2025-05-22
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知