基于AWPSO-GRU算法的盾构掘进姿态预测方法—以上海市域铁路机场联络线为例
DOI:
作者:
作者单位:

1.中交隧道工程局有限公司上海机场联络线项目部;2.同济大学上海自主智能无人系统科学中心;3.同济大学土木工程学院;4.青海大学土木工程学院

作者简介:

通讯作者:

中图分类号:

U455.43;U456.3

基金项目:

国家重点研发计划课题(2022YFC3800905);上海市科学技术委员会科研计划项目(23DZ1202806;21DZ1200601);上海市“科技创新行动计划”优秀学术/技术带头人计划项目(22XD1430200);同济大学学科交叉联合攻关项目(2022-3-ZD-07)


Prediction Method of Shield Tunneling Attitude based on AWPSO-GRU Algorithm—Taking the Shanghai Suburban Railway Airport Connection Line as an Example
Author:
Affiliation:

Project Department of Shanghai Airport Connecting Line, CCCC Tunnel Engineering Bureau Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,本文提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive weight particle swarm optimization,AWPSO)算法;然后结合门控循环单元(gated recurrent unit,GRU)神经网络构建盾构姿态预测模型,其中AWPSO算法用于确定GRU神经网络中的最优超参数组合;最后结合上海轨道交通市域线机场联络线张江站-度假区站区间现场监测数据进行了案例验证。结果表明,本文提出的基于AWPSO-GRU的盾构掘进姿态预测模型具有较高的可靠性和工程实用性,可为盾构掘进过程中施工参数的设定提供参考和依据。

    Abstract:

    To solve the engineering problem of unclear standards and strong subjective experience when shield tunneling drivers set excavation parameters, which makes it difficult to control the shield tunneling attitude, an intelligent prediction model for shield tunneling attitude that considers the comprehensive effect of geological conditions, tunnel structure, and excavation parameters is proposed in this paper. Firstly, an adaptive inertia weight particle swarm optimization (AWPSO) algorithm was established; Then, a shield attitude prediction model was constructed by combining gated recurrent unit (GRU) neural network, where the AWPSO algorithm was used to determine the optimal combination of hyperparameters in the GRU neural network; Finally, a case study was conducted to verify the on-site monitoring data between Zhangjiang Station and Resort Station on the Shanghai Suburban Railway Airport Connection Line. The results indicate that the proposed shield tunneling attitude prediction model based on AWPSO-GRU has high reliability and engineering practicality, which can provide reference and basis for setting construction parameters during shield tunneling.

    参考文献
    相似文献
    引证文献
引用本文

朱美恒,陈兆庚,张冬梅,等. 基于AWPSO-GRU算法的盾构掘进姿态预测方法—以上海市域铁路机场联络线为例[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-17
  • 最后修改日期:2024-05-23
  • 录用日期:2024-06-05
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注