基于数据驱动型多项式混沌逼近的概率潮流计算
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM 301

基金项目:

中国南方电网有限责任公司科技项目(编号:ZDKJXM20210063);国家自然科学基金资助项目(编号:52007133)


Probabilistic Power Flow Calculation Based on the Data-Driven Polynomial Chaos Approximation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了分析不确定性因素对电力系统的影响,兼具快速性和准确性的多项式混沌逼近法(Polynomial Chaos Approximation,PCA)被广泛应用于概率潮流计算中。多项式混沌逼近法要求已知随机输入变量的概率密度函数(Probability density function,PDF),同时随机输入变量需要满足独立条件。针对已知随机输入变量为历史数据的情况,本文提出一种数据驱动型多项式混沌逼近(Data Driven Polynomial Chaos Approximation,DDPCA)的概率潮流方法。首先,DDPCA根据历史数据选择最优的正交多项式,进而确定考虑随机输入变量非线性相关性时的高斯样本,然后结合蒙特卡洛积分计算权重。紧接着,基于高斯样本进行少量的潮流计算,并根据潮流结果和权重求解逼近系数,进而求取随机输出变量的统计特征。将所提方法与点估计法进行了比较,在三个算例上的结果验证了所提方法的有效性。

    Abstract:

    In order to analyze the influence of uncertain factors on power system, Polynomial Chaos Approximation (PCA) method, which is both fast and accurate, is widely used in probabilistic power flow calculation. The polynomial chaotic approximation method requires that the probability density function of the random input variable is known, and the random input variable must satisfy the independent condition. In this paper, a probabilistic power flow method based on Data Driven Polynomial Chaos Approximation (DDPCA) is proposed for the known random input variables which are historical data. First, DDPCA selects the optimal orthogonal polynomial according to the historical data, and then determines the Gaussian sample considering the nonlinear correlation of random input variables, and then computes the weights with Monte Carlo integral. Then, a small amount of power flow is calculated based on Gaussian samples, and the approximation coefficient is solved according to the power flow results and weights, and then the statistical characteristics of the random output variables are obtained. The proposed method is compared with the point estimation method, and the effectiveness of the proposed method is verified by the results of three examples.

    参考文献
    相似文献
    引证文献
引用本文

雷傲宇,蒋友津,刘承锡,等. 基于数据驱动型多项式混沌逼近的概率潮流计算[J]. 科学技术与工程, 2025, 25(2): 598-609.
Lei Aoyu, Jiang youjin, Liu Chengxi, et al. Probabilistic Power Flow Calculation Based on the Data-Driven Polynomial Chaos Approximation[J]. Science Technology and Engineering,2025,25(2):598-609.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-05
  • 最后修改日期:2025-01-08
  • 录用日期:2024-03-28
  • 在线发布日期: 2025-01-21
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!