基于神经网络的泥水盾构地表沉降预测与掘进参数优化
DOI:
作者:
作者单位:

1.山东大学岩土与结构工程研究中心,山东大学齐鲁交通学院;2.山东大学岩土与结构工程研究中心,山东大学土建与水利学院;3.哈尔滨地铁集团有限公司

作者简介:

通讯作者:

中图分类号:

U231

基金项目:

国家自然科学基金青年基金(52109130);中国博士后科学基金(2022M711930)


Prediction of Ground Settlement and Optimization of Tunneling Parameters of Slurry Shield Based On Neural Network
Author:
Affiliation:

Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究泥水盾构掘进参数对地表沉降的影响,依托哈尔滨地铁3号线工程河松-河山叠落区间左线泥水盾构掘进与监测数据,基于遗传算法优化的BP神经网络,针对不同沉降输出形式展开研究,引入隧道距离标签,优化了神经网络拟合效果,并根据此网络模型进行参数敏感性分析,得出三项最敏感参数,并进行穷举试验,进一步分析参数对地表沉降的具体影响效果。研究表明:泥水盾构掘进在穿过某一环两天后其地表沉降表现与掘进参数关联性不密切,地表沉降分析可以聚焦于当日监测值;盾构机穿过某一环前、中、后会对该环上方的地表沉降产生不同的影响,后续基于神经网络对地表沉降的研究可考虑纳入该项指标;泥水盾构掘进参数中,降低泥浆粘度和提高泥浆比重可控制地表下沉,提高推进速度可以降低施工对地表沉降的影响。

    Abstract:

    In order to study the influence of slurry shield tunneling parameters on surface settlement, based on the slurry shield tunneling and monitoring data of the left line of the Hesong-Heshan stacked section of Harbin Metro Line 3 project, based on the BP neural network optimized by genetic algorithm, the different settlement output forms are studied. The tunnel distance label is introduced to optimize the neural network fitting effect, and the parameter sensitivity analysis is carried out according to this network model. Three most sensitive parameters are obtained, and exhaustive tests are carried out to further analyze the specific influence of parameters on surface settlement. The research shows that the surface settlement performance of slurry shield tunneling is not closely related to the tunneling parameters after passing through a certain ring for two days, and the surface settlement analysis can focus on the monitoring value of the day. Before, during and after the shield machine passes through a certain ring, it will have different effects on the surface settlement above the ring. Subsequent research on surface settlement based on neural network can be considered to include this index. Among the parameters of slurry shield tunneling, reducing slurry viscosity and increasing slurry specific gravity can control surface subsidence, and increasing propulsion speed can reduce the impact of construction on surface subsidence.

    参考文献
    相似文献
    引证文献
引用本文

任旭东,张凤凯,丁万涛,等. 基于神经网络的泥水盾构地表沉降预测与掘进参数优化[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2024-06-16
  • 录用日期:2024-07-09
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注
《科学技术与工程》入选维普《中文科技期刊数据库》自然科学类期刊月度下载排行榜TOP10