基于符号变量矩阵的改进样本熵算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3

基金项目:


An Improved Sample Entropy Algorithm Based on Symbolic Variable Matrix
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对样本熵算法在相空间重构过程中存在冗余运算的问题,通过构建符号变量矩阵的方法,对样本熵算法的相空间重构过程进行替换,建立改进的样本熵算法。白噪声和粉噪声仿真信号分析表明,改进的样本熵算法能有效提取信号的特征,并且具有较高计算效率。以往复压缩机轴承间隙故障为研究对象,应用改进的样本熵算法对其进行特征提取,并与样本熵进行对比,该方法特征提取结果与样本熵算法保持高度一致,算法的计算效率远高于样本熵算法。

    Abstract:

    Aiming at the problem of redundancy in the phase space reconstruction of sample entropy algorithm, the phase space reconstruction process of sample entropy algorithm is replaced by a symbolic variable matrix, and an improved sample entropy algorithm is established. The analysis of white noise and powder noise simulation signals shows that the improved sample entropy algorithm can extract signal features effectively and has high computational efficiency. In the past, bearing clearance faults of complex compressors were studied, and the improved sample entropy algorithm was applied to extract features and compared with sample entropy. The feature extraction results of the method were highly consistent with the sample entropy algorithm, and the computational efficiency of the algorithm was much higher than that of the sample entropy algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李彦阳,罗伟. 基于符号变量矩阵的改进样本熵算法[J]. 科学技术与工程, 2025, 25(5): 1913-1919.
Li Yanyang, Luo Wei. An Improved Sample Entropy Algorithm Based on Symbolic Variable Matrix[J]. Science Technology and Engineering,2025,25(5):1913-1919.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-22
  • 最后修改日期:2024-11-20
  • 录用日期:2024-07-09
  • 在线发布日期: 2025-02-20
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!