基于改进灰狼优化算法的枪弹着靶快速定位方法
DOI:
作者:
作者单位:

1.中北大学机电工程学院;2.中北大学电气与控制工程学院

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

山西省重点研发计划(201903D221025)


A rapid positioning method for gunshot landing based on IGWO algorithm
Author:
Affiliation:

1.College of Mechatronics Engineering, North University of China;2.College of Electrical and Control Engineering, North University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统CCD交汇立靶采集的图像中,枪弹位置提取时采用背景差分法、互相关法所存在通用性差、耗时长的问题。通过对CCD精度靶图像弹丸提取所存在的问题进行深入分析,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)算法的CCD精度靶图像弹丸提取方法。首先,将子弹提取问题转化为在一定约束条件下,寻找灰度值最小连通区域问题。其次,建立了最小化区域灰度值模型、竖直光斑区域及低灰度区域剔除模型。然后,采用基于维度学习的狩猎(DLH)搜索策略的改进灰狼算法,来跳出局部最优解,进而提升求解性能。最后,在参数设定相同的条件下,采用IGWO、GWO、MFO算法、互相关算法、背景差分法进行了对比试验。实验结果表明,在上述方案下,平均求解时间缩短至12ms。同时,目标检测成功率达到了95%,相较其它对比算法,性能提升明显。

    Abstract:

    The background difference method and cross-correlation method used in the extraction of the bullet position in the images collected by the traditional CCD intersection stand-up target have the problems of poor versatility and long time-consuming. By analyzing the problems existing in CCD precision target image projectile extraction, a method for CCD precision target image projectile extraction based on IGWO algorithm is proposed. The dimensional learning-based hunting (DLH) search strategy is used to update the position of each search factor through the neighborhood. Generate candid[ ]ate solutions, increase the diversity of search populations, and jump out of local optimal solutions. The bullet extraction problem is transformed into the problem of finding the minimum connected region of gray value under certain constraints. The minimization area gray value model, the vertical light spot area and the low gray area elimination model were established. Under the same parameter setting, the IGWO, GWO, MFO algorithm, cross-correlation algorithm, and background difference method were used to conduct comparative experiments. The experimental results show that the target detection success rate of the IGWO algorithm is much higher than other algorithms, reaching 95%, and the algorithm solution time is much lower than other algorithms, shortening to 12ms.

    参考文献
    相似文献
    引证文献
引用本文

鲁旭涛,郭亚坤,李静,等. 基于改进灰狼优化算法的枪弹着靶快速定位方法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-21
  • 最后修改日期:2024-06-04
  • 录用日期:2024-06-08
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注