基于最小成分本征向量子空间投影的近邻分类算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金资助项目(62301496, 62106230);国家资助博士后研究人员计划项目(GZC20232447);中国博士后科学基金特别资助项目(2021T140616);中国博士后科学基金批面上资助项目(2021M692920);河南省自然科学基金项目(242300421411, 242300420277);重庆邮电大学大数据重点实验室开放基金项目(BDIC-2023-A-007, BDIC-2023-B-005)


Nearest Neighbor Classification Algorithm Based on Minimum Component Eigenvector Subspace Projection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近邻法是模式识别中最经典的算法之一,其分类性能高度依赖样本间的距离度量方式。适当的距离度量方式有助于提高近邻法的分类性能,然而当前此类算法多从判别模型的角度寻找最大化分类效果的度量,忽略了各类样本集的类聚集属性。鉴于此,基于最小成分本征向量提出了一种子空间投影近邻分类算法(Nearest Neighbor Classification Algorithm Based on Minimum Component Eigenvector Subspace Projection, NN_MCESP)。该算法结合了经典的主成分分析和近邻法,能够有效地实现基于最小成分本征向量投影的各类样本聚集属性分析,并完成基于子空间近邻投票准则的分类。在多组分类数据集上通过与其他分类算法的实验对比,验证了NN_MCESP算法的有效性和稳定性。

    Abstract:

    The nearest neighbor algorithm is one of the most classical pattern recognition algorithms, which classification performance highly depends on the distance metric between samples. Appropriate distance metric can help improve the classification performance of the algorithm. However, such algorithms mostly seek metrics to maximize classification effectiveness from the perspective of discriminant models currently, ignoring the aggregation properties of various sample sets belonging to different classes. In view of this, a nearest neighbor classification algorithm based on minimum component eigenvector subspace projection (NN_MCESP) is proposed. This algorithm combines classic principal component analysis (PCA) and nearest neighbor algorithm, which can effectively implement aggregation properties analysis of various sample clusters based on minimum component eigenvector projection, and complete classification based on subspace nearest neighbor voting criteria. The effectiveness and stability of performance NN_MCESP are validated by comparing with other classification algorithms on multiple data sets.

    参考文献
    相似文献
    引证文献
引用本文

李蒙蒙,杨中良,岳彩通,等. 基于最小成分本征向量子空间投影的近邻分类算法[J]. 科学技术与工程, 2024, 24(36): 15511-15517.
Li Mengmeng, Yang Zhongliang, Yue Caitong, et al. Nearest Neighbor Classification Algorithm Based on Minimum Component Eigenvector Subspace Projection[J]. Science Technology and Engineering,2024,24(36):15511-15517.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-06
  • 最后修改日期:2024-10-17
  • 录用日期:2024-05-21
  • 在线发布日期: 2025-01-02
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!