基于CatBoost集成学习的边坡稳定性预测方法研究
DOI:
作者:
作者单位:

1.广东省南粤交通投资建设有限公司;2.中国铁道科学研究院集团有限公司 铁道建筑研究所;3.福州大学紫金地质与矿业学院

作者简介:

通讯作者:

中图分类号:

TD 804;

基金项目:

国家重点研发计划(编号:2021YFB2301403)


Research on slope stability prediction method based on CatBoost ensemble learning
Author:
Affiliation:

1.Guangdong Nanyue Transportation Investment Construction Co,Ltd;2.Railway Engineering Research Institude,China Academy of Railway Sciences Co,Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自然与人工边坡的广泛分布,需研究人员对边坡作出快速、准确、可靠的稳定性初步评价。为对边坡稳定性进行广义高效地准确判断,引入一种新型的CatBoost集成学习算法评价边坡稳定性。根据边坡基本几何与地质要素,无需数值建模与计算,直接客观地评判边坡稳定性状态,并从概率信息论角度给出边坡稳定性概率,实现速度快、精度高、稳健性好的广域尺度下边坡稳定性评价。以影响边坡稳定性的5个主要因素作为评价指标,创造了大型边坡稳定性评价数据集,据此构建了基于CatBoost集成学习的边坡稳定性预测模型。仿真结果表明,对比常见机器学习和代表性集成学习模型,CatBoost模型预测效果明显优于其它模型,且减少了超参数调优需求,更具有通用性、客观性和可靠性,可有效应用于边坡稳定性初步评价。通过举例仁化(湘粤界)至博罗高速公路仁化至新丰段某边坡工程,验证了基于CatBoost集成学习的边坡稳定性评价方法的可行性。

    Abstract:

    The wide distribution of natural and artificial slopes requires researchers to make a rapid, accurate and reliable preliminary evaluation of the stability of slopes. In order to accurately judge slope stability in a generalized and efficient sense, a new CatBoost ensemble learning algorithm is introduced to evaluate slope stability. According to the basic geometry and geological elements of the slope, without the need for numerical modeling and calculation, the stability state of the slope is directly and objectively evaluated, and the probability of slope stability is given from the perspective of probability information theory, so as to realize the stability evaluation of the slope at the wide-area scale with fast speed, high precision and good robustness. Taking five main factors affecting slope stability as evaluation indexes, a large slope stability evaluation dataset was created, and a slope stability prediction model based on CatBoost ensemble learning was constructed. The simulation results show that compared with common machine learning and representative ensemble learning models, the prediction effect of CatBoost model is significantly better than that of other models, and the hyperparameter tuning requirements are reduced, which is more versatile, objective and reliable, and can be effectively applied to the preliminary evaluation of slope stability. Through the example of a slope project of Renhua to Xinfeng section of Renhua (the junction of Hunan and Guangdong Province) to Boluo Expressway, the feasibility of slope stability evaluation method based on CatBoost ensemble learning is verified.

    参考文献
    相似文献
    引证文献
引用本文

谭勇,陈记,杨忠民,等. 基于CatBoost集成学习的边坡稳定性预测方法研究[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2024-05-16
  • 录用日期:2024-05-21
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注