基于AO-VMD-BF和多模型融合的电梯故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.4

基金项目:

新疆维吾尔自治区自然科学基金(2022D01C431)


Elevator Fault Diagnosis Based on AO-VMD-BF and Multi Model Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确的实现电梯故障诊断,提出基于AO-VMD-BF和多模型融合的电梯故障诊断。首先,利用天鹰优化算法(aquila optimizer algorithm, AO)优化的变分模态分解(variational mode decomposition, VMD)将信号分解为多个模态分量,并利用皮尔逊相关系数去除虚假分量,针对剩余信号仍有噪声的问题,通过巴特沃斯滤波(butterworth filter, BF)进行二次去噪,对去噪筛选后的模态分量子序列进行重构即可得到去噪后的振动信号。然后提取时域、频域和熵特征,构成多域特征向量集。最后建立以卷积神经网络(convolutional neural network, CNN)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和自适应提升(adaptive boosting, AdaBoost)为基模型,极限梯度提升树(extreme gradient boosting, XGBoost)为元分类器的Stacking集成学习的电梯故障诊断模型。通过实验结果分析表明,所提的方法能够有效提取电梯轿厢振动信号中的故障特征,对电梯故障进行准确、有效的诊断。

    Abstract:

    In order to accurately achieve elevator fault diagnosis, an elevator fault diagnosis based on AO-VMD-BF and multi model fusion is proposed. Firstly, the variational mode decomposition(VMD) optimized by the aquila optimizer(AO) algorithm is used to decompose the signal into multiple modal components, and the Pearson correlation coefficient is used to remove false components. To address the problem of noise in the remaining signal, the butterworth filter(BF) is used for secondary denoising, The denoised vibration signal can be obtained by reconstructing the filtered modal sub quantum sequence. Then extract time-domain, frequency-domain, and entropy features to form a multi domain feature vector set. Finally, a Stacking ensemble learning elevator fault diagnosis model is established based on convolutional neural network(CNN), random forest(RF), support vector machine(SVM), and adaptive boosting(AdaBoost) models, with extreme gradient boosting(XGBoost) as the meta classifier. The analysis of experimental results shows that the proposed method can effectively extract fault features from elevator car vibration signals, and accurately and effectively diagnose elevator faults.

    参考文献
    相似文献
    引证文献
引用本文

邱朝洁,张林鍹,李名洪,等. 基于AO-VMD-BF和多模型融合的电梯故障诊断[J]. 科学技术与工程, 2024, 24(35): 15023-15030.
Qiu Chaojie, Zhang Linxuan, Li Minghong, et al. Elevator Fault Diagnosis Based on AO-VMD-BF and Multi Model Fusion[J]. Science Technology and Engineering,2024,24(35):15023-15030.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-16
  • 最后修改日期:2024-10-17
  • 录用日期:2024-06-05
  • 在线发布日期: 2024-12-25
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知