多策略改进麻雀搜索算法优化UKF方法分析
DOI:
作者:
作者单位:

河南工业大学

作者简介:

通讯作者:

中图分类号:

TP18;TN713

基金项目:

国家自然科学基金(62201199);河南省科技攻关项目(232102320037) ;河南工业大学自科创新基金(2021ZKCJ07)


Analysis of Multi-Strategy Improvement of the Sparrow Search Algorithm for Optimizing the UKF Method
Author:
Affiliation:

Henan University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无迹卡尔曼滤波(Unscented Kalman Filter, UKF)中UT变换在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)对UT变换中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。

    Abstract:

    A method for optimizing the control parameters of the sample point distribution state within the framework of the Unscented Transform (UT) for the Unscented Kalman Filter (UKF) is introduced. The issue of abnormal filtering performance arising from the state of sample point distributions is addressed by this method. A multi-strategy fused Sparrow Search Algorithm (ISSA) is employed to finely tune the control parameters. The goal is to enhance the distribution of Sigma points, thereby improving the effectiveness of nonlinear approximations and ultimately enhancing the accuracy of filtering estimations. To address the shortcomings of traditional Sparrow Search Algorithms, several refinements are implemented. Initially, a Cubic chaotic mapping is applied to diversify the initial population. Furthermore, during the exploration phase, a nonlinear adaptive convergence factor is introduced to balance the algorithm's capacity for global exploration and local exploitation. Additionally, a wavelet mutation strategy is integrated into the follower phase to prevent blind adherence to specific paths and mitigate the risk of becoming trapped in local optima. Lastly, an adaptive t-distribution perturbation capability is introduced to strengthen the algorithm's ability to perform wide-ranging global searches. The efficacy of the proposed Improved Sparrow Search Algorithm (ISSA) is demonstrated through simulation experiments conducted on various test functions. The results consistently show that ISSA outperforms other methods in terms of convergence and solution accuracy. Furthermore, the benefits of ISSA are extended to the optimization of parameters within the UKF algorithm. Experimental outcomes indicate that the ISSA-UKF algorithm reduces the Root Mean Square Error (RMSE) of position by 52.2% and the RMSE of velocity by 21.9%, thus affirming the viability and effectiveness of the proposed enhancements.

    参考文献
    相似文献
    引证文献
引用本文

刘建娟,李志伟,姬淼鑫,等. 多策略改进麻雀搜索算法优化UKF方法分析[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-09
  • 最后修改日期:2024-05-13
  • 录用日期:2024-05-21
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注