基于动态贝叶斯网络的机场韧性评价方法
DOI:
作者:
作者单位:

中国民航大学交通科学与工程学院

作者简介:

通讯作者:

中图分类号:

V351

基金项目:

国家重点研发计划项目


Airport resilience evaluation method
Author:
Affiliation:

College of Transportation Science and Engineering, Civil Aviation University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机场韧性体现为机场能够适应环境变化,具有较强的抵抗力并实现功能恢复的性能。本文基于机场功能水平,提出了机场韧性指数的计算公式和评价标准,以反映机场的韧性水平。考虑气象灾害等级与机场预防和恢复措施的强度,建立了基于动态贝叶斯网络的机场功能水平计算模型,由父节点水平指数和节点状态转移函数建立贝叶斯网络节点间的条件概率表,并采用模糊理论进行改进,计算得出机场韧性指数和子特性指数。以北方某4E机场为例,得出了在2021年2月暴雪下机场韧性评价结果,并基于真实的航班数据,对模型的有效性进行了验证。结果表明:相比基于航班数据的功能水平计算方法,本文提出贝叶斯网络模型机场韧性指数计算误差小于0.01,子特性平均误差为0.0129,能对机场正常运行时的韧性和灾害下韧性的动态变化过程进行科学准确地评价。进一步分析了灾害等级、预防与恢复措施强度对机场韧性的影响,结果表明,灾害对机场韧性的恶化作用大于预防措施的抵抗作用;灾害等级越高、预防措施水平越低,机场韧性恢复的程度越小。

    Abstract:

    Airport resilience is reflected in the airport 's ability to adapt to environmental changes, have strong resistance and achieve performance recovery. Based on the level of airport performance, this paper puts forward the calculation formula and evaluation standard of airport resilience index to reflect the level of airport resilience. Considering the level of meteorological disasters and the strength of airport prevention and recovery measures, an airport performance level calculation model based on dynamic Bayesian network is established. The conditional probability table between Bayesian network nodes is established by the parent node level index and the node state transition performance. The fuzzy theory is used to improve and calculate the airport resilience index and sub characteristic index. Taking a 4E airport in the north as an example, the evaluation results of airport resilience under blizzard in February 2021 are obtained, and the validity of the model is verified based on real flight data. The results show that compared with the performance level calculation method based on flight data, the calculation error of airport resilience index of dynamic Bayesian network model proposed in this paper is less than 0.01, and the average error of sub-characteristics is 0.0129, which can scientifically and accurately evaluate the resilience of airport during normal operation and the dynamic change process of resilience under disaster. The influence of disaster level, prevention and recovery measures on airport resilience is further analyzed. The results show that the deterioration effect of disaster on airport resilience is greater than the resistance effect of prevention measures. The higher the disaster level and the lower the level of preventive measures, the smaller the degree of resilience recovery of the airport.

    参考文献
    相似文献
    引证文献
引用本文

齐麟,怀永成,陈小林,等. 基于动态贝叶斯网络的机场韧性评价方法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-29
  • 最后修改日期:2024-05-24
  • 录用日期:2024-05-29
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注