基于时间卷积和长短期记忆网络的短期云资源预测模型
DOI:
作者:
作者单位:

桂林理工大学信息科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

国家自然科学基金(62262011);广西自然科学基金(2021JJA170130)


Short-term Cloud Resource Prediction Model Based on TCN-LSTM
Author:
Affiliation:

College of Information Science and Engineering, Guilin University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于TCN-LSTM云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴的公开的数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标MAE降低8%-13.7%,RMSE降低9.8%-13.1%,证明所提模型的有效性。

    Abstract:

    With the continuous development of container cloud technology, it is of great significance to predict and analyze the overall trend and peak of cloud resource requests for efficient utilization and reasonable allocation of container cloud resources. Deep learning technology for load prediction has become a key technology to solve the unbalanced utilization of container cloud resources. Aiming at the problems of low prediction accuracy and insufficient capture sequence features existing in the current single model and combination model of load prediction, a cloud resource combination prediction model based on TCN-LSTM is proposed. The hollow convolution in the combination model increases the sensitivity field without reducing the feature size to obtain longer time series features. The residual network can transfer information across layers to accelerate the convergence of the network, and the obtained time series features can effectively improve the prediction accuracy of LSTM. Use Alibaba"s publicly available dataset to make predictions, the experiment shows that the proposed model is compared with the single prediction model and other combined models, and the error index MAE is reduced by 8%-13.7% and RMSE by 9.8%-13.1%, which proves the effectiveness of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

陈基漓,李海军,谢晓兰. 基于时间卷积和长短期记忆网络的短期云资源预测模型[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-26
  • 最后修改日期:2024-07-02
  • 录用日期:2024-07-09
  • 在线发布日期:
  • 出版日期: