基于改进人工鱼群算法求解旅行商问题及多点路径规划
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP23; TP18

基金项目:

国家自然科学基金(61962060)


Solving Traveling Salesman Problem and Multi-Point Path Planning Based on Improved Artificial Fish Swarm Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统人工鱼群算法在求解旅行商问题时遇到寻优精度低、算法收敛慢、易于落入局部最优解等问题,本文提出了一种融合交叉变异的改进人工鱼群算法。首先,通过在鱼群迭代求解过程中加入交叉变异操作,增强种群的多样性方式,提高了算法在全局搜索中寻找更优解的能力;其次,引入了自适应的人工鱼群策略,动态调整视野距离与拥挤度因子,从而改善算法的局部探索能力与收敛速度;第三,在MATLAB环境下使用TSPLIB数据集进行了仿真验证,结合表明,改进后的人工鱼群算法在收敛速度和寻优精度方面较传统方法有显著提升,跳出局部最优解的能力得到增强,路径规划结果更接近最优解;最后,进一步对经典旅行商问题模型的地图维度和路径进行改进,最终实现了本改进算法在三维多点覆盖路径规划上的应用。

    Abstract:

    To address the issues of low optimization accuracy, slow convergence speed, and susceptibility to local optima encountered by traditional Artificial Fish Swarm Algorithm (AFSA) when solving the Traveling Salesman Problem (TSP), this paper proposes an improved AFSA algorithm integrated with cross-over mutation. Firstly, by introducing cross-over mutation operations during the iterative solving process of the fish swarm, population diversity is enhanced, thereby improving the algorithm's capability to find better solutions in global search. Secondly, an adaptive fish swarm strategy is introduced, dynamically adjusting the visual range and crowding factor to enhance the algorithm's local exploration capability and convergence speed. Thirdly, simulation verification is conducted using the TSPLIB dataset in the MATLAB environment. Results demonstrate that the improved AFSA algorithm exhibits significant improvements in convergence speed and optimization accuracy compared to traditional methods, with enhanced ability to escape local optima and path planning results closer to the optimal solution. Finally, further improvements are made to the classical TSP model in terms of map dimensions and paths, ultimately realizing the application of this improved algorithm in three-dimensional multi-point coverage path planning.

    参考文献
    相似文献
    引证文献
引用本文

王璞,刘宏杰,周永录. 基于改进人工鱼群算法求解旅行商问题及多点路径规划[J]. 科学技术与工程, 2024, 24(35): 15090-15097.
Wang Pu, Liu Hongjie, Zhou Yonglu. Solving Traveling Salesman Problem and Multi-Point Path Planning Based on Improved Artificial Fish Swarm Algorithm[J]. Science Technology and Engineering,2024,24(35):15090-15097.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-23
  • 最后修改日期:2024-09-29
  • 录用日期:2024-05-29
  • 在线发布日期: 2024-12-25
  • 出版日期:
×
一元复始,万象更新。祝作者朋友 元旦快乐!
喜报!《科学技术与工程》5篇文章入选中国科协“2024年度科技期刊双语传播工程”项目