核电厂反应堆冷却剂系统故障诊断模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TL364.5

基金项目:

国家自然科学基金面上项目(52174189), 湖南省杰出青年科学基金项目(2023JJ10035)


A Model for Fault Diagnosis of Reactor Coolant System for Nuclear Power Plants
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的基于数据驱动的故障诊断方法难以精准诊断核电厂反应堆冷却剂系统(RCS)故障这一问题,本文按照以下路线建立了一种核电厂RCS故障诊断模型:首先,应用基于交叉验证的递归特征消除算法(RFECV)选择模型的输入特征;然后,应用改进的鲸鱼优化算法(IWOA)优化XGBoost模型的超参数;最后,在上述基础上,应用XGBoost模型,建立RCS故障诊断模型。应用所建立的模型对冷却水丧失(LOCA)、主泵卡轴(MPT)和蒸汽发生器管道破裂(SGTR)事故进行诊断,并其与传统的故障诊断模型进行对比,验证了本文所建立模型的准确性。模型的诊断结果能够为保障核反应堆的安全稳定运行,杜绝核安全事故的发生提供重要参考。

    Abstract:

    Traditional data-driven fault diagnosis methods are hard to accurately diagnosis faults in the reactor coolant system (RCS) of a nuclear power plant. In order to address this challenge, a model for fault diagnosis of the RCS was established in the following route. Firstly, recursive feature elimination with cross-validation (RFECV) algorithm was used to select the features for the model. Then, improved Whale Optimization Algorithm (IWOA) was used to tune the hyperparameters of the model. Finally, the XGBoost model was used to establish the fault diagnosis model for RCS. The established model was applied to diagnose loss of coolant accident (LOCA), main pump trip (MPT), and steam generator tube rupture (SGTR), and the accuracy of the established model was validated by comparing with the traditional data-driven fault diagnosis models. The diagnosis result could be treated as a crucial reference for ensuring the safe and stable operation of the nuclear reactor and preventing nuclear accidents.

    参考文献
    相似文献
    引证文献
引用本文

戴滔,隋阳,郑梦琰. 核电厂反应堆冷却剂系统故障诊断模型[J]. 科学技术与工程, 2024, 24(35): 15042-15047.
Dai Tao, Sui Yang, Zheng Mengyan. A Model for Fault Diagnosis of Reactor Coolant System for Nuclear Power Plants[J]. Science Technology and Engineering,2024,24(35):15042-15047.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-21
  • 最后修改日期:2024-10-14
  • 录用日期:2024-05-15
  • 在线发布日期: 2024-12-25
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知