Mental Workload Recognition Based on Weighted Phase Lag Index Heat Map
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
脑力负荷识别对提高人机交互操作人员的工作绩效具有重要意义。目前已有研究表明,通过提取脑电 (electroencephalogram,EEG) 信号的能量特征进行脑力负荷识别取得了不错的分类效果。但该方法只关注到信号的幅度信息,而忽略了相位信息;只分析了各个通道的频域特征,没有考虑不同通道信号之间的同步关系。为充分考虑不同脑区间的功能连接性,本文提出了一种基于加权相位滞后指数(weighted phase lag index, WPLI)热力图的脑力负荷分类方法。对预处理后的脑电信号计算两两通道间的WPLI并绘制热力图,用于评估不同通道信号之间的相位耦合情况,由此反映不同脑区间的功能连接性。由WPLI热力图可直观地观察到:在高、低负荷状态下,大脑功能连接性的分布存在明显差异。通过实验,分别对能量特征图和WPLI热力图采用方向梯度直方图-支持向量机(histogram of oriented gradient-support vector machine, HOG-SVM)和LeNet-5两种方法进行分类。结果表明:WPLI热力图和LeNet-5的组合具有较好的分类结果。
Abstract:
Mental workload recognition is of great significance to improve the work performance of human-computer interaction operators. At present, some studies have shown that good classification results have been achieved by extracting the energy characteristics of electroencephalogram (EEG) signals for mental workload recognition. However, this method only focuses on the amplitude information of the signal, while ignoring the phase information. Only the frequency domain characteristics of each channel are analyzed, and the synchronization relationship between the signals of different channels is not considered. In order to fully consider the functional connectivity of different brain regions, a new method of mental workload classification based on weighted phase lag index (WPLI) heat map is proposed. The WPLI between the two channels of the preprocessed EEG signal was calculated and the heat map was drawn to evaluate the phase coupling between the signals of different channels, thus reflecting the functional connectivity of different brain regions. It can be intuitively observed from the WPLI heat map that there are significant differences in the distribution of brain functional connectivity under high and low load conditions. Through the experiments, the energy feature map and WPLI heat map are classified by histogram of oriented gradient-support vector machine (HOG-SVM) and LeNet-5 respectively. The results show that the combination of WPLI heat map and LeNet-5 has better classification results.
参考文献
相似文献
引证文献
引用本文
张可新,曲洪权,李洋. 基于加权相位滞后指数热力图的脑力负荷识别[J]. 科学技术与工程, 2024, 24(28): 12055-12064. Zhang Kexin, Qu Hongquan, Li Yang. Mental Workload Recognition Based on Weighted Phase Lag Index Heat Map[J]. Science Technology and Engineering,2024,24(28):12055-12064.