基于智能优化算法及其优化BP神经网络的室内定位
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311.13

基金项目:

装备技术基础科研项目(E054JK1601)


Research on indoor positioning based on intelligent optimization algorithm and optimized BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,智能优化算法成为了很多研究方向的热点,但将其应用于室内TDOA定位的研究和文章较少,因此,本文旨在研究智能优化算法在室内TDOA定位方面的应用效果。首先,分别使用WSO、CSA、SOA、WOA、GWO和SSA这六种智能优化算法进行室内的二维TDOA定位,对比分析上述算法在室内定位领域的表现,并和传统的Taylor算法的定位误差进行对比;接下来,使用SOA算法对BP神经网络进行优化,使用优化后的SOA-BP进行定位,与基础的BP神经网络的定位误差进行对比。结果表明,本文使用的六种智能优化算法在室内定位领域有着不错的表现,各智能优化算法的效果相似,平均定位误差为0.44m左右,相较于传统的Taylor算法提升约9.2%;SOA-BP的定位误差相较于基础的BP神经网络降低超过30%。

    Abstract:

    At present, intelligent optimization algorithms have become a hot topic in many research directions, but there are few studies and articles applying them to indoor TDOA positioning. Therefore, this article first uses six intelligent optimization algorithms, namely WSO, CSA, SOA, WOA, GWO, and SSA, for indoor two-dimensional TDOA positioning. The performance of these algorithms in the field of indoor positioning is compared and analyzed, and the positioning error is compared with the traditional Taylor algorithm; Next, use the SOA algorithm to optimize the BP neural network, use SOA-BP for positioning, and compare the positioning error with the basic BP neural network. The experiment shows that the six intelligent optimization algorithms used in this article have good performance in the field of indoor positioning. The effects of each intelligent optimization algorithm are similar, with an average positioning error of about 0.44m, which is about 9.2% higher than the traditional Taylor algorithm; The positioning error of SOA-BP is reduced by more than 30% compared to the basic BP neural network.

    参考文献
    相似文献
    引证文献
引用本文

李帅辰,武建锋. 基于智能优化算法及其优化BP神经网络的室内定位[J]. 科学技术与工程, 2024, 24(20): 8568-8576.
Li Shuaichen, Wu Jianfeng. Research on indoor positioning based on intelligent optimization algorithm and optimized BP neural network[J]. Science Technology and Engineering,2024,24(20):8568-8576.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-10
  • 最后修改日期:2024-05-06
  • 录用日期:2023-12-02
  • 在线发布日期: 2024-07-26
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!