基于多新息扩展卡尔曼滤波的锂离子电池SOC估计研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM911.11

基金项目:

国家自然科学基金项目(51705052)、重庆市自然科学基金项目(cstc2019jcyj-msxmX0779)、国家社会科学基金项目(23BGL220)


Research on SOC Estimation of Li-ion Battery Based on Multi innovation extended Kalman filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。

    Abstract:

    Lithium batteries have the advantages of high energy density and long cycle life, and are widely used in electric vehicle power plants. However, the operating conditions of vehicles are complex and variable, and the battery exhibits highly nonlinear properties, making it difficult to accurately calculate the state of charge (SOC) of the battery. In order to optimize the SOC estimation accuracy of lithium batteries, a fractional second-order RC model combined with Warburg elements was constructed, and uses adaptive genetic algorithm for parameter identification; Combining multi innovation theory and extended Kalman filter filter algorithm, an ion battery SOC estimation algorithm based on multi innovation extended Kalman filter filter (MIEKF) is proposed, and the effectiveness of this method is verified by experimental data, which provides a new approach and practical support for improving the SOC estimation accuracy and the cycle life of vehicle mounted lithium batteries.

    参考文献
    相似文献
    引证文献
引用本文

吴胜利,欧华,邢文婷. 基于多新息扩展卡尔曼滤波的锂离子电池SOC估计研究[J]. 科学技术与工程, 2024, 24(16): 6742-6748.
Wu Sheng-li, Ou Hua, Xing Wen-ting. Research on SOC Estimation of Li-ion Battery Based on Multi innovation extended Kalman filtering[J]. Science Technology and Engineering,2024,24(16):6742-6748.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-01
  • 最后修改日期:2024-03-27
  • 录用日期:2023-10-26
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知