四分点集中阻尼弦系统本征解的性质
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O32 O302

基金项目:

国家自然科学基金(51978112,52178272)


Properties of The Intrinsic Solution of A Four-Point Centrally Damped String System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对四分点集中阻尼弦系统,推导并化简其频率方程的代数形式,求得代数方程的解,经过换元逆过程,获得原频率方程闭合解。根据代数基本定理讨论系统闭合解的结构,结果表明频率方程存在三组闭合解,其中两组闭合解互为共轭。具体结论如下:1)系统存在两种相同的运动特征,其单位时间对数衰减率相同,频率互为相反数;2)系统中三个解支对应的单位时间对数衰减率和频率,总是随着阶次的增加而呈周期循环的;3)在同一解支下的各单值分支也呈周期性循环,即随着阶次的增加,其对应频率增加4π的整数倍,而单位时间对数衰减率保持不变。

    Abstract:

    For a four-point centrally damped string system, the algebraic form of the transcendental frequency equation is deduced and simplified to obtain the solution of the algebraic equation, and then the closed solution of the original frequency equation is obtained through a commutative inverse process. The structure of the closed solution of the system is discussed according to the fundamental theorem of algebra. The results show that there are three sets of closed solutions of the frequency equation, two of which are conjugate to each other. The specific conclusions are as follows: 1) The system has two identical motion characteristics, the logarithmic attenuation rate per unit time is the same, and the frequencies are opposite to each other; 2) The logarithmic attenuation rate and frequency per unit time corresponding to the three deexpenditures in the system always cycle periodically with the increase of order; 3) Each single-valued branch under the same debranching also shows a periodic cycle, that is, with the increase of order, its corresponding frequency increases by an integer multiple of 4π, while the logarithmic attenuation rate per unit time remains unchanged.

    参考文献
    相似文献
    引证文献
引用本文

郑罡,王保權,王梦丽,等. 四分点集中阻尼弦系统本征解的性质[J]. 科学技术与工程, 2024, 24(20): 8403-8408.
Zheng Gang, Wang Baoquan, Wang Mengli, et al. Properties of The Intrinsic Solution of A Four-Point Centrally Damped String System[J]. Science Technology and Engineering,2024,24(20):8403-8408.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-22
  • 最后修改日期:2024-07-16
  • 录用日期:2023-12-01
  • 在线发布日期: 2024-07-26
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!