基于ID-YOLO的数字仪表检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);中央高校基本科研业务费专项资金资助


Digital Instrument Detection Method Based on ID-YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前针对数字式仪表检测算法在边缘设备具有实时性差、泛化性差的问题,对此提出一种采用Instrument Detection-YOLO(ID-YOLO)模型的变电站数字仪表检测识别方法。算法以YOLOv5模型为基础,首先设计轻量的Li-YOLO骨干网络提取图像特征,降低网络参数,提高检测实时性;然后设计了一种双级路由注意力模块(BRAM),提高网络对小数点的检测精度以及网络的鲁棒性和泛化性;最后,引入α-IoU损失,通过更准确的IoU计算,可以提高模型的检测精度。实验表明,相比于其他基于深度学习的数字仪表检测识别方法,本文方法在不同显示方式的数字仪表识别任务上具有更好的准确性和泛化性,而且可以在检测准确率领先的情况下,将模型在边缘设备上的检测速度从6.87帧/s提升至8.77帧/s,其实时性和检测精度均能够满足实际变电站智能数据采集、检测识别的工程需要。

    Abstract:

    Aiming at the problem that the digital Instrument Detection algorithm has poor real-time performance and poor generalization in edge equipment, an instrument detection-YOLO (ID-YOLO) model for substation digital instrument detection and recognition is proposed. The algorithm is based on YOLOv5 model. Firstly, a lightweight Li-YOLO backbone network is designed to extract image features, reduce network parameters, and improve real-time detection. Then, a bi-level routing attention module (BRAM) is designed to improve the precision of decimal point detection and the robustness and generalization of the network. Finally, the introduction of α-IoU loss can improve the detection accuracy of the model through more accurate IoU calculation. Experiments show that compared with other digital instrument detection and recognition methods based on deep learning, the proposed method has better accuracy and generalization on digital instrument recognition tasks with different display modes, and the detection speed of the model on the edge device can be improved from 6.87 frames /s to 8.77 frames /s while the detection accuracy is leading. Its real-time performance and detection accuracy can meet the engineering needs of intelligent data acquisition, detection and identification of actual substation.

    参考文献
    相似文献
    引证文献
引用本文

翟永杰,徐蔚,韩宇辰,等. 基于ID-YOLO的数字仪表检测方法[J]. 科学技术与工程, 2024, 24(16): 6775-6782.
Zhai Yongjie, Xu Wei, Han Yuchen, et al. Digital Instrument Detection Method Based on ID-YOLO[J]. Science Technology and Engineering,2024,24(16):6775-6782.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-21
  • 最后修改日期:2024-03-26
  • 录用日期:2023-10-24
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知