无监督和弱监督视频异常检测方法回顾与前瞻
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

北京市教育科学“十三五”规划重点课题(CHAA19081)


Review of Unsupervised and Weakly Supervised Video Anomaly Detection Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着监控技术的不断发展,监控摄像头已经被广泛部署到各种场景中。手动检测视频异常情况已经变得不可能。因此,作为智能监控系统核心的视频异常检测技术正在受到广泛关注和研究。随着深度学习的发展,视频异常检测领域取得了显著的成就,并涌现出许多新的异常检测方法。本文将梳理了应用在不同数据类型上的无监督和弱监督视频异常检测学习方法,分析现有方法的贡献,并比较不同模型的性能。此外,还整理了一些常用的和新发布的数据集,并总结了未来工作要面临的挑战和发展趋势。

    Abstract:

    With the continuous development of?monitoring technology, surveillance cameras have been widely deployed in various scenarios. Manual detection of video abnormality has become impossible. Therefore,?video anomaly detection?technology, as the core of?intelligent surveillance systems, is receiving extensive attention and research. With the development of?deep learning, the field of?video anomaly?detection has made significant achievements and has emerged many new anomaly detection methods. In this paper, unsupervised and weakly supervised video anomaly detection learning methods applied to various data types were sorted out, the contributions of existing methods were analyzed, and the performance of different models was compared. In addition, some commonly used and newly released datasets have also been compiled, and the challenges and development trends that future work will face have been summarized.

    参考文献
    相似文献
    引证文献
引用本文

张琳,陈兆波,马晓轩,等. 无监督和弱监督视频异常检测方法回顾与前瞻[J]. 科学技术与工程, 2024, 24(19): 7941-7955.
Zhang Lin, Chen Zhaobo, Ma Xiaoxuan, et al. Review of Unsupervised and Weakly Supervised Video Anomaly Detection Methods[J]. Science Technology and Engineering,2024,24(19):7941-7955.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-18
  • 最后修改日期:2024-04-14
  • 录用日期:2024-02-20
  • 在线发布日期: 2024-07-18
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!