基于SnowNLP的微博网络舆情分析系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.1

基金项目:

国家自然科学基金(62072416 );河南省重点研发专项(221111210500);河南省科技攻关项目(232102211053,222102210170,222102210322)


MicroBlog Network Public Opinion Analysis System Based on SnowNLP
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着微博、抖音、贴吧等新兴网络社交媒体的发展,大量用户开始喜欢使用这些平台进行发布和获取信息,因此累积了大量舆情数据。为了能够及时监测网络舆论动向,更好的维护互联网的安全运营和网络安全,针对实时微博数据,研究设计了一种基于SnowNLP的微博网络舆情分析系统。该系统由舆情数据采集、舆情数据分析和舆情数据可视化组成,能够实现微博数据文本挖掘、网络舆情数据情感分析、舆情数据与关键词匹配结果统计等功能,并能够对微博内容情感分析结果、用户等级、内容分词结果等进行可视化展示。实验测试结果表明:本系统功能运行正常,同时验证了设计方案的可行性和有效性。系统在网络舆情监测领域具有重要的应用价值。

    Abstract:

    With the development of emerging social media like Microblog, Douyin and Tieba, an increasing number of users have been drawn to these platforms to post and acquire information, leading to the accumulation of massive public opinion data. In order to promptly monitor public opinion movements and better safeguard the safe operation of the Internet and network security, a SnowNLP-based network public opinion analysis system was designed to address real-time Microblog data. The system was comprised of the acquisition, analysis and visualization of public opinion data, which is capable of textual mining of Microblog data, emotional analysis of network public opinion data, match of public opinion data with keywords, and visualization of results of emotional analysis of Microblog content, user level and word segmentation. The results of the experimental test show that the features of the system function normally and in the meantime the feasibility and effectiveness of the design solution are validated. The system is of great applicative value in the field of network public opinion monitoring.

    参考文献
    相似文献
    引证文献
引用本文

蔡增玉,韩洋,张建伟,等. 基于SnowNLP的微博网络舆情分析系统[J]. 科学技术与工程, 2024, 24(13): 5457-5464.
Cai Zengyu, Han Yang, Zhang Jianwei, et al. MicroBlog Network Public Opinion Analysis System Based on SnowNLP[J]. Science Technology and Engineering,2024,24(13):5457-5464.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-12
  • 最后修改日期:2024-04-30
  • 录用日期:2023-10-06
  • 在线发布日期: 2024-05-17
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注
《科学技术与工程》入选维普《中文科技期刊数据库》自然科学类期刊月度下载排行榜TOP10