摘要:随着自然语言处理技术的发展,文本技术已经被广泛应用在生活的方方面面,并且发挥着重要的作用。在司法领域,人工智能促使司法向信息化、智能化发展,其中司法文本在这一发展进程中承担着重要作用,对司法文本进行处理能够实现“降维”的目的,对迅速了解案件详情,获取案件要素有很大的帮助。但是现有的生成模型应用在司法文本上,生成的质量不尽如人意,还存在着生成重复、冗余,与现实情况不相符等问题,特别是当行为人存在多项罪名和多项判罚时,使用常见生成模型生成的会出现罪罚不匹配的情况。为了解决这些问题,提出基于知识增强预训练模型的司法文本生成模型——LCSG-ERNIE(Legal Case Summary Generation Based on Enhanced language Representation with iNformatIve Entities),该模型在预训练语言模型中融入司法知识,并结合对比学习的思想生成,最终通过实验证明提出的模型取得了较好效果。