基于呼吸疲劳节点的驾驶员疲劳状态判别研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491.6

基金项目:

广东省基础与应用基础研究基金(2022A1515010692);广东省重点领域研发计划项目(2022B0701180001);教育部产学合作协同育人项目(220605329072033);肇庆市西江创新创业团队与领军人才项目;广东省本科高校教学质量与教学改革工程建设项目。


Research on Driver Fatigue State Discrimination Based on Respiratory Fatigue Node
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高呼吸信号判别驾驶疲劳的准确率,本文通过模拟驾驶试验探究了呼吸信号与驾驶员疲劳状态的关系,提出了呼吸疲劳节点的概念,并基于呼吸疲劳节点判别了驾驶员的疲劳状态。首先,通过模拟驾驶试验采集驾驶员的呼吸信号,采用Karolinska嗜睡量表 (Karolinska Sleepiness Scale, KSS) 对疲劳程度进行主观自评量化。其次,把单位时间内眼睛闭合百分比 (Percentage of Eyelid Closure over the pupil over time, PERCLOS) 作为参考,与主观自评反馈结合,对驾驶员呼吸疲劳节点进行标定。最后,基于呼吸疲劳节点利用随机树算法获得了轻/重度呼吸疲劳变化节点的判别模型。结果表明:该模型能更加及时、准确地判别出驾驶员的疲劳状态;基于随机树算法获得的筛选条件对轻度呼吸疲劳变化节点识别的准确性要高于重度呼吸疲劳变化节点;轻/重度呼吸疲劳变化节点的平均识别误差分别为3.50 min和3.66 min,预测准确率分别为92.09%和92.03%。

    Abstract:

    In order to improve the accuracy of respiratory signal to distinguish driving fatigue, this paper explores the relationship between respiratory signal and driver fatigue state through simulated driving test. The concept of respiratory fatigue node is proposed, and the driver "s fatigue state is distinguished based on the respiratory fatigue node. Firstly, the respiratory signals of drivers were collected by simulated driving test, and the Karolinska Sleepiness Scale (KSS) was used to quantify the subjective self-evaluation of their fatigue degree. Secondly, the Percentage of Eyelid Closure over the pupil over time (PERCLOS) was used as a reference, combined with subjective self-evaluation feedback to calibrate the respiratory fatigue nodes of drivers. Finally, based on the respiratory fatigue nodes, the random tree algorithm was used to obtain the discriminant model of mild/severe respiratory fatigue change nodes. The results show that the model can identify the driver "s respiratory fatigue state more timely and accurately and the accuracy of the screening conditions based on the random tree algorithm for the identification of mild respiratory fatigue change nodes is higher than that of severe respiratory fatigue change nodes; The average recognition errors of mild/severe respiratory fatigue change nodes are 3.50 min and 3.66 min, respectively, the prediction accuracy is 92.09% and 92.03% respectively.

    参考文献
    相似文献
    引证文献
引用本文

朱靖龙,刘强,李波,等. 基于呼吸疲劳节点的驾驶员疲劳状态判别研究[J]. 科学技术与工程, 2024, 24(16): 6927-6934.
Zhu Jinglong, LiuQiang, LiBo, et al. Research on Driver Fatigue State Discrimination Based on Respiratory Fatigue Node[J]. Science Technology and Engineering,2024,24(16):6927-6934.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-29
  • 最后修改日期:2024-03-19
  • 录用日期:2023-10-24
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知