综述:基于卷积神经网络和自注意力机制的植物病害分类技术
DOI:
作者:
作者单位:

华南农业大学

作者简介:

通讯作者:

中图分类号:

N39 N37 N8

基金项目:

国家自然科学基金(31670670),广东省自然科学基金(2020A1515011009)


Review: Plant Disease Classification Techniques Based on Convolutional Neural Networks and Self-Attention Mechanisms
Author:
Affiliation:

South China Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着深度学习的不断发展,越来越多的研究将深度学习应用在植物病害分类领域。本文以卷积神经网络(CNN)和自注意力机制的网络(Transformer)为视角,梳理了深度学习在植物病害分类中的相关研究。首先,介绍了CNN和Transformer的基本原理和特点。其次,回顾了近年来的研究成果,重点关注了使用CNN和Transformer在植物病害分类中的应用,并进行了综合分析。最后,讨论了深度学习在植物病害分类中的挑战和未来的研究方向,并强调了检测速度和模型轻量化在应用方面的重要性。本文旨在为研究人员提供深入的总结和指导,以促进植物病害分类技术的发展和应用。

    Abstract:

    With the continuous development of deep learning, more and more studies are applying deep learning in the field of plant disease classification. This article uses the convolutional neural networks (CNN) and the self-attention mechanism networks (Transformer) as the perspective to sort out the relevant research on deep learning in plant disease classification. First, the basic principles and characteristics of CNN and Transformer are introduced. Secondly, the research results in recent years are reviewed, focusing on the application of CNN and Transformer in plant disease classification, and a comprehensive analysis is conducted. Finally, the challenges and future research directions of deep learning in plant disease classification are discussed, and the importance of detection speed and model lightweight in application is emphasized. This article aims to provide researchers with an in-depth summary and guidance to promote the development and application of plant disease classification techniques.

    参考文献
    相似文献
    引证文献
引用本文

刘昌余,郑晶晶,裴嘉薇,等. 综述:基于卷积神经网络和自注意力机制的植物病害分类技术[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-26
  • 最后修改日期:2023-10-24
  • 录用日期:2023-10-26
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注