基于VMD-LSTM-IPSO-GRU的电力负荷预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金青年科学基金资助项目(51809097);湖北省重点研发计划项目(2021BAA193)。


Short-term Load Forecasting Based On VMD-LSTM-IPSO-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了挖掘电力负荷数据中的潜藏信息,提高负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、优化长短期神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)优化门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,更加合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明,相对于其它常规模型,该混合模型可有效的提取模态特征,具有更高的预测精度。

    Abstract:

    To explore the hidden information in power load data and improve the accuracy of load forecasting, a hybrid prediction model based on Variational Mode Decomposition (VMD), Long-term and Short-term Memory Network (LSTM), Improved Particle Swarm Optimization (IPSO) algorithm and Gated Recurrent Unit Neural Network (GRU) is proposed to deal with the strong nonlinearity and non-stationarity of power load. First, use correlation analysis to determine the input factors, then use the VMD algorithm to decompose the load data into a series of intrinsic mode functions (IMF) and residual quantities combined with sample entropy decomposition to more reasonably determine the decomposition layer number and penalty factor. Secondly, according to the zero-crossing rate, these quantities are divided into low-frequency and high-frequency components. The low-frequency component uses the LSTM network, and the high-frequency component uses the IPSO-GRU network for prediction respectively. Finally, the predicted results are reconstructed to obtain the final result of power load.SThe simulation results show that compared with other conventional models, this hybrid model can effectively extract modal features and has higher prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

肖威,方娜,邓心. 基于VMD-LSTM-IPSO-GRU的电力负荷预测[J]. 科学技术与工程, 2024, 24(16): 6734-6741.
Xiao Wei, Fang Na, DENG Xin. Short-term Load Forecasting Based On VMD-LSTM-IPSO-GRU[J]. Science Technology and Engineering,2024,24(16):6734-6741.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-26
  • 最后修改日期:2024-03-21
  • 录用日期:2023-10-24
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知