考虑风向概率特征的航班时刻优化方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V351

基金项目:

国家自然科学基金委员会与中国民用航空局联合资助项目(U1633124);中国民航大学研究生科研创新资助项目(2022YJS088)


A flight schedule optimization method considering wind direction characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在航班时刻表进行实际运行过程中,风向的变化对航班到达终端区共用航路点的时间造成影响,进而造成容量过载或容量浪费。因此,根据风向的统计概率对航班时刻进行调整,目的是制定在一定程度上能减少共用航路点的容量过载或容量浪费的航班时刻表。根据风向对起飞航班跑道分配的影响提出了基准风向的概念,并基于航季中各月份在过去5年间的机场基准风向概率预测了下一年各月的机场基准风向概率。以误差平方和与轮廓系数作为聚类指标,将下一年中机场基准风向概率相似的月份聚为一类。在聚类结果的基础上建立考虑风向不确定性的航班时刻优化模型,并将-约束法与改进粒子群算法结合提出-约束-PSO组合算法实现多目标模型的求解,以北京终端区的离场航班为研究对象进行验证。研究结果表明:相比初始航班时刻表,共用航路点小时流量的最大值减少了12%,在不同基准风向时的共用航路点流量方差分别降低49%和56%;相比线性加权求和的方法,该方法可以实现共用航路点的溢出航班总量减少70%。研究结果表明在风向不确定的条件下,该模型可以在一定程度上使共用航路点的流量更均衡,减少出现共用航路点容量过载或容量浪费的现象。

    Abstract:

    During the actual operation of flight schedules, the change of wind direction affects the arrival time of flights at the shared waypoints in the terminal area, which in turn causes capacity overload or capacity waste. Therefore, flight schedule is adjusted based on statistical probabilities of wind direction, with the aim of developing a flight schedule that can reduce to some extent the capacity overload or waste of shared waypoints. The concept of a benchmark wind direction is proposed based on the impact of wind direction on the allocation of runways for departing flights. Using the probability of the benchmark wind direction at the airport for each month in the past five years during the flight season, the probability of the benchmark wind direction for each month in the next year is predicted. Based on the similarity of the probabilities of the benchmark wind direction, the months of the next year are clustered using the sum of squared errors and silhouette coefficients as clustering indicators. On the basis of the clustering results, a flight schedule optimization model considering wind direction uncertainty is established, and the -constraint method is combined with an improved particle swarm algorithm to solve the multi-objective model,which is called -constraint-PSO combination algorithm. The departure flights from the Beijing terminal area are used as the research object for verification. The results show that compared with the initial flight schedule, the maximum value of the hourly flow of shared waypoints decrease by 12%, and the variance of the shared waypoint flow at different benchmark wind directions decrease by 49% and 56%, respectively. Compared with the linear weighting method, this method can reduce the total number of overflow flights at shared waypoints by 70%. Research results indicate that under uncertain wind conditions the model can to some extent achieve a more balanced flow of traffic at shared waypoints, reducing occurrences of capacity overload or waste at these waypoints.

    参考文献
    相似文献
    引证文献
引用本文

王莉莉,郭微萌. 考虑风向概率特征的航班时刻优化方法[J]. 科学技术与工程, 2024, 24(16): 6951-6962.
Wang Lili, Guo Weimeng. A flight schedule optimization method considering wind direction characteristics[J]. Science Technology and Engineering,2024,24(16):6951-6962.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-18
  • 最后修改日期:2024-03-20
  • 录用日期:2023-10-26
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知