张拉整体结构的智能化找形研究进展
DOI:
作者:
作者单位:

北京建筑大学

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

国家自然科学基金 (62271036,62101022);北京市自然科学基金 (4232021);北京市属高校高水平创新团队建设计划项目(IDHT20190506);北京建筑大学双塔人才培养计划(JDYC20220818);北京建筑大学青年教师科研能力提升计划(X21083)


Research Progress in Intelligent Form-finding of Tensegrity Structure
Author:
Affiliation:

1.College of Electrical and Information Engineering, Beijing University of Architecture;2.Beijing University of Architecture

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,被称为“未来的结构体系”的张拉整体结构得到学术界的广泛关注。其中,找形是张拉整体结构设计的关键步骤,即确定结构的平衡状态的过程。随着人工智能逐渐应用到各个领域,张拉整体结构的智能找形方法也应运而生,通过使用人工智能技术改进传统的找形方法,以达到简化找形流程的目的。文章首先介绍了人工智能在建筑领域的应用。其次,阐述了使用人工智能技术改进张拉整体结构找形方法的研究意义。然后,介绍了张拉整体结构几种常用的传统的找形方法及其优缺点。再通过调研大量文献,对现在最新的张拉整体结构智能找形方法,特别是优化算法和神经网络方法进行详细介绍和分析。最后,预测并分析总结了该领域未来可能的研究方向及相应的发展趋势。

    Abstract:

    In recent years, the tensegrity structure, known as the "future structural system," has received widespread attention from the academic community. Among them, form-finding is a key step in the design of a tensegrity structure, which is the process of determining the equilibrium state of the structure. With the gradual application of artificial intelligence in various fields, intelligent form-finding methods for tensegrity structures have also emerged. By using artificial intelligence technology to improve traditional form-finding methods, the goal of simplifying the form-finding process is achieved. The article first introduces the application of artificial intelligence in the field of architecture. Secondly, the research significance of using artificial intelligence technology to improve the form-finding method of the tensegrity structure was elaborated. Then, several commonly used traditional form-finding methods for tensegrity structures and their advantages and disadvantages were introduced. Through extensive literature research, a detailed introduction and analysis will be conducted on the latest intelligent form-finding methods for tensegrity structures, especially optimization algorithms and neural network methods. Finally, the possible future research directions and corresponding development trends in this field were predicted and analyzed and summarized.

    参考文献
    相似文献
    引证文献
引用本文

郭茂祖,李卓璇,李阳,等. 张拉整体结构的智能化找形研究进展[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-13
  • 最后修改日期:2023-11-03
  • 录用日期:2023-11-14
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注