基于参数化建模方法的复合式盾构机刀盘力学性能分析与结构优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U455.3+;TH122;O341

基金项目:

国家重点研发项目(2022YFC3802301)


Mechanical performance analysis and structural optimization of composite shield machine cutterhead based on a parameterized modeling method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    刀盘是盾构机的核心部件之一,合理的刀盘结构设计是安全高效掘进的基础。为了快速高效建立刀盘有限元模型并分析其力学性能,采用基于APDL(ANSYS parametric design language)命令流开发的参数化建模方法,建立了某型号复合式盾构机刀盘的数字模型。对刀盘施加极限工况下的推力和扭矩,通过静力学分析得到了刀盘的应力分布和变形分布,确定了最大应力和最大变形位置,校核了刀盘的静强度和静刚度。进一步以刀盘总质量为优化目标,以刀盘强度和刚度为约束条件建立了基于参数化建模的刀盘结构优化方法,提出了刀盘结构优化流程。通过参数敏感性分析确定了刀盘优化参数,探究相关参数对刀盘强度和刚度的影响。对复合式盾构机刀盘的关键参数进行优化。结果表明:优化后刀盘的最大应力降低了12%,最大变形降低了20%,质量减轻了119 kg。因此,基于参数化建模的优化方法可以提供刀盘的强度与刚度,并同时降低刀盘质量。研究成果可为后续多目标刀盘结构优化提供参考。

    Abstract:

    The cutterhead is one of the core components of the shield machine, and reasonable cutterhead structural design is the foundation for safe and efficient excavation. In order to quickly and efficiently establish the finite element model of the cutterhead and then analyze its mechanical performance, a parameterized modeling method based on the ANSYS parametric design language(APDL) command flow was adopted to establish a digital model of a certain type of composite shield machine cutterhead. By applying the ultimate thrust and torque to the cutterhead, the stress and deformation distributions were obtained through a finite element analysis, and the positions where experience maximum stress and displacement were identified. In doing so, the strength and stiffness conditions were validated as well. In addition, a parameterized modeling based optimization method for cutterheads was established by incorporating with the overall mass of the cutterhead as the optimization objective and the strength and stiffness of as constraints, and the corresponding optimization process was proposed. The optimization parameters of the cutterhead were determined through parameter sensitivity analysis, and the influence of relevant parameters on the strength and stiffness of the cutterhead was explored. The key parameters of the composite shield machine cutterhead studied were optimized. After optimization, the maximum stress of the cutterhead, the maximum deformation and the total weight were reduced by 12%, 20%, and 119 kg, respectively. As a result, the proposed optimization method based on parameterized modeling can improve the strength and stiffness of the cutterhead while reducing the quality of the cutterhead. The research results can shed light on the optimization of multi-objective cutterhead structure.

    参考文献
    相似文献
    引证文献
引用本文

刘鑫宇,张家年,张超,等. 基于参数化建模方法的复合式盾构机刀盘力学性能分析与结构优化[J]. 科学技术与工程, 2024, 24(20): 8733-8745.
Liu Xinyu, Zhang Jianian, Zhang Chao, et al. Mechanical performance analysis and structural optimization of composite shield machine cutterhead based on a parameterized modeling method[J]. Science Technology and Engineering,2024,24(20):8733-8745.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-13
  • 最后修改日期:2024-04-28
  • 录用日期:2023-11-14
  • 在线发布日期: 2024-07-26
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注
《科学技术与工程》入选维普《中文科技期刊数据库》自然科学类期刊月度下载排行榜TOP10