基于改进YOLOv5的自动驾驶目标检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),


Autonomous driving target detection method based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前自动驾驶领域的目标检测算法在交通场景下的漏检目标,目标定位不精确、目标特征表达不充分及目标识别效果欠佳等问题,提出一种基于TPH-YOLOv5的道路目标检测方法。首先为了减轻物体尺度急剧变化带来的漏检风险,增加了用于微小物体检测的检测头,为在高密度场景中精确定位对象,使用Transformer预测头来捕获全局信息;其次为了增强模型的特征表达能力,用SIMAM模块对卷积层的输出进行加权;最后,为了提高目标识别的精度,网络颈部增加了4个SPP块来进行多尺度融合,为了加快收敛速度和提高回归精度采用EIOU作为边界框损失函数。通过消融、对比和可视化验证实验表明,提出的算法比YOLOv5在平均精度上提高了8.1%,漏检率明显减少,目标检测效果明显增强。

    Abstract:

    Aiming at the problems of missed targets, inaccurate target localization, insufficient target feature expression, and unsatisfactory target recognition effects in the current object detection algorithms for autonomous driving in traffic scenarios, a road object detection method based on TPH-YOLOv5 is proposed. Firstly, to reduce the risk of missed objects caused by drastic changes in object scales, a detection head for detecting small objects is added, and a Transformer prediction head is used to capture global information for precise object localization in high-density scenes. Secondly, to enhance the feature expression ability of the model, the output of the convolutional layer is weighted using the SIMAM module. Finally, in order to improve the accuracy of target recognition, four SPP blocks are added to the neck of the network for multi-scale fusion, and the EIOU is used as the bounding box loss function to accelerate convergence speed and improve regression accuracy. Through ablation, comparison, and visualization experiments, it is shown that the proposed algorithm improves the average precision by 8.1% compared to YOLOv5, significantly reduces the missed detection rate, and enhances the object detection performance.

    参考文献
    相似文献
    引证文献
引用本文

高昕,甄国涌,储成群,等. 基于改进YOLOv5的自动驾驶目标检测方法[J]. 科学技术与工程, 2024, 24(16): 6757-6765.
GAO Xin, ZHEN Guoyong, CHU Chengqun, et al. Autonomous driving target detection method based on improved YOLOv5[J]. Science Technology and Engineering,2024,24(16):6757-6765.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-23
  • 最后修改日期:2024-03-11
  • 录用日期:2023-10-24
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知