基于非洲秃鹫算法优化卷积神经网络的重叠峰解析方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O433

基金项目:

现代农业(桃)产业技术体系(CARS-30-2-06)


Overlapping peak resolution method for optimizing convolutional neural network based on the African vulture optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用光谱仪器检测土壤中重金属时,由于仪器分辨率较低,峰位相近元素的特征峰会产生重叠。光谱重叠峰严重影响定量分析结果的准确性,为了得到准确的重金属含量需要进行光谱重叠峰分解。本文提出利用非洲秃鹫算法优化卷积神经网络(AVOA_CNN)的重叠峰解析方法。首先,利用高斯函数模型模拟出150个双高斯含噪光谱重叠峰和43个三高斯含噪光谱重叠峰,选择不同小波基函数进行光谱数据去噪,以信噪比和均方根误差(RMSE)为评价指标,最终确定coif3小波基函数,使用导数法进行光谱重叠峰预处理。然后,使用AVOA_CNN获得卷积神经网络(convolutional neural network,CNN)预测结果,解析结果表明,AVOA_CNN成功分解重叠峰且准确率高,双高斯光谱重叠峰和三高斯光谱重叠峰参数(峰强度,峰位,峰宽)的最大相对误差平均值分别为3.15%和5.90%。最后对比麻雀搜索算法优化CNN、CNN与AVOA_CNN,结果显示AVOA_CNN模型预测准确率最高。

    Abstract:

    Due to the low resolution of spectroscopic instrument, the characteristics of elements with similar peak position overlap when detecting heavy metals in soil. Spectral overlapping peaks seriously affect the accuracy of quantitative analysis results. In order to obtain accurate heavy metal content, spectral overlapping peaks need to be decomposed. In this paper, the African Vulture algorithm is used to optimize the overlapping peaks of convolutional neural networks (AVOA_CNN). Firstly, 150 double Gaussian overlapping peaks and 43 triple Gaussian overlapping peaks with noise were simulated by Gaussian function model. Different wavelet basis functions were selected for spectral data denoising. With signal-to-noise ratio and root mean square error (RMSE) as evaluation indexes, coif3 wavelet basis function was finally determined, and derivative method was used to pretreat spectral overlapping peaks. Then, AVOA_CNN is used to obtain the convolutional neural network (CNN) prediction results. The analytic results show that AVOA_CNN can decompose the overlapping peaks successfully and with high accuracy, and that the parameters of the double and triple Gaussian overlapping peaks (peak intensity, peak location, Peak width) were 3.15% and 5.90%, respectively. Finally, by comparing the sparrow search algorithm to optimize CNN, CNN and AVOA_CNN, the results show that the AVOA_CNN model has the highest prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

牛传乐,李芳,任顺,等. 基于非洲秃鹫算法优化卷积神经网络的重叠峰解析方法[J]. 科学技术与工程, 2024, 24(16): 6592-6599.
Niu Chuanle, LI Fang, Ren Shun, et al. Overlapping peak resolution method for optimizing convolutional neural network based on the African vulture optimization algorithm[J]. Science Technology and Engineering,2024,24(16):6592-6599.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-17
  • 最后修改日期:2024-03-11
  • 录用日期:2023-10-20
  • 在线发布日期: 2024-06-13
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知