实景三维模型缺陷修复关键技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

湖北省地质局科技项目(KJ2020-33, KJ2022-38)


Key Technologies for Repairing Defect of 3D Real Scene Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了有效提高实景三维模型反映各类型地理要素的准确度和精细度以充分支撑实景三维中国建设工作,本文首先将当前无人机倾斜摄影三维重建后的三维模型中存在的模型缺陷系统性分为四大类型,并分析其产生的原因。随后,本文针对性地提出了三种关键技术:一是基于连通性和欧氏距离聚类的交互式悬浮物去除,利用图割理论和随机一致性抽样算法识别和删除悬浮物;二是基于图割理论的水面半自动整平,在利用Grabcut算法提取水面区域的同时为其赋予统一高程以实现水面的平整;三是基于深度网络模型的水体纹理inpainting填充,利用卷积神经网络和深度对抗训练以获得水体纹理的特征和结构从而实现水体缺失纹理的修复。最后,本文利用湖北省宜昌市的实际生产数据进行了修复实验,实验结果表明本文提出的各项关键技术能够有效修复三维模型缺陷,从而使实景三维模型具备更精细的地理实体和地理景观还原度。

    Abstract:

    In order to effectively improve the accuracy and precision of 3D real scene model reflecting various types of geographic features to fully support the 3D real scene construction in China, this paper systematically classified the model defects existing in the current 3D models reconstructed by UAV tilt photography into four types and analyzed their causes. Subsequently, three key technologies were proposed: First, interactive suspension removal based on connectivity and Euclidean distance clustering, using graph cut theory and random consistency sampling algorithm to identify and remove suspensions; Second, water surface semi-automatic leveling based on graph cut theory, using Grabcut algorithm to extract water surface area while giving it a uniform elevation to achieve water surface leveling; Third, water texture inpainting based on deep network model, using convolutional neural network and deep adversarial training to obtain the characteristics and structure of water texture to achieve repair of missing water texture. Finally, practical production data from Yichang City, Hubei Province was used for experiments. The experimental results showed that the key technologies proposed in this article could effectively repair 3D model defects, thereby enabling 3D real scene model to have more refined geographic entities and geographic landscape restoration.

    参考文献
    相似文献
    引证文献
引用本文

龚元夫,熊忠招,陈关州,等. 实景三维模型缺陷修复关键技术[J]. 科学技术与工程, 2024, 24(19): 8339-8345.
Gong Yuanfu, Xiong Zhongzhao, Chen Guanzhou, et al. Key Technologies for Repairing Defect of 3D Real Scene Model[J]. Science Technology and Engineering,2024,24(19):8339-8345.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-17
  • 最后修改日期:2024-04-04
  • 录用日期:2023-11-14
  • 在线发布日期: 2024-07-18
  • 出版日期:
×
喜报!《科学技术与工程》继续入选“中国科技核心期刊”
亟待确认版面费归属稿件,敬请作者关注