融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41;TP18

基金项目:

国家自然科学基金(41871302)


Improved YOLOv5 Insulator Defect Fault Detection Method Integrating Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电力系统巡检过程中,人工巡检方式难度较高,且存在安全隐患,搭载智能算法的无人机平台代替人工进行绝缘子检测的方法前景较好。针对绝缘子缺陷目标检测过程中存在的速度较慢、准确度较低等不足,提出了融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法,该方法在YOLOv5s网络中融入SE注意力模块和CBAM注意力模块,并且将SE注意力模块与网络结构当中的C3模块结合,强化了网络的特征提取能力。通过相关的图像处理方法完成了自建绝缘子数据集的构建,采用了k-means++聚类算法构建自建数据集的先验框,并引入了Mosaic-9数据增强策略,有效解决了训练数据不足难以保证训练效果的问题。实验验证表明,改进后的检测方法,在不影响检测时间的前提下,绝缘子检测的准确度提升9.7%,对电力系统巡检方法具有一定参考意义。

    Abstract:

    In the process of power system inspection, manual inspection is difficult and poses safety hazards. The unmanned aerial vehicle platform equipped with intelligent algorithms has a promising prospect of replacing manual insulator detection methods. In response to the shortcomings of slow speed and low accuracy in the detection process of insulator defect targets, an improved YOLOv5 insulator defect fault detection method integrating attention mechanism is proposed. This method integrates the SE attention module and CBAM attention module in the YOLOv5s network, and combines the SE attention module with the C3 module in the network structure to enhance the network"s feature extraction ability. The construction of the self built insulator dataset was completed through relevant image processing methods. The k-means++clustering algorithm was used to construct the prior frame of the self built dataset, and the Mosaic-9 data augmentation strategy was introduced, effectively solving the problem of insufficient training data and difficulty in ensuring training effectiveness. Experimental verification shows that the improved detection method improves the accuracy of insulator detection by 9.7% without affecting the detection time, which has certain reference significance for power system inspection methods.

    参考文献
    相似文献
    引证文献
引用本文

孙新娟,杨天宇. 融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法[J]. 科学技术与工程, 2024, 24(17): 7221-7230.
Sun Xinjuan, Yang Tianyu. Improved YOLOv5 Insulator Defect Fault Detection Method Integrating Attention Mechanism[J]. Science Technology and Engineering,2024,24(17):7221-7230.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-25
  • 最后修改日期:2024-03-20
  • 录用日期:2023-10-10
  • 在线发布日期: 2024-06-24
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知