基于YOLOv5s-FCS的钢材表面缺陷检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

安徽省科技重大专项(201903a07020013);安徽理工大学2022年博士创新(2022CX1007)


YOLOv5s-FCS Based Steel Surface Defect Detection Study
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统钢材表面缺陷检测方法易出现误检、漏检和部分缺陷种类检测精度低等问题,本文设计了一种钢材表面缺陷网络YOLOv5s-FCS。首先本文引用了FReLU激活函数构建了卷积模块CBF,有效增强了网络的空间解析能力,优化了网络检测精度;其次,本文将坐标注意力机制嵌入到网络的neck部分来增强网络特征融合的能力,从而使网络能够提取更加丰富的特征信息;最后,将YOLOv5s的损失函数替换为SIoU loss,提高了预测框的回归精度。通过在NEU-DET数据集上进行消融实验、可视化对比实验,结果表明,YOLOv5s-FCS网络的mAP值达到了0.747,相较于原YOLOv5s网络提高了8.3%,相较于YOLOv3网络提高了11.8%,相较于YOLOXs网络提高了4.2%,相较于YOLOv6s提高了1.4%,验证了该方法的可行性、有效性。

    Abstract:

    The YOLOv5s-FCS network for traditional steel materials, which addresses issues such as false positives, false negatives, and low accuracy in detecting certain types of defects, is presented in this article. Firstly, the CBF convolution module is constructed using the FReLU activation function to enhance the network's spatial resolution capability and optimize detection accuracy. Secondly, a coordinate attention mechanism is embedded into the neck part of the network to enhance its feature fusion capability, enabling the extraction of more rich feature information. Finally, the SIoU loss replaces the YOLOv5s loss function to improve the regression accuracy of the predicted box. Through ablation experiments and visualization comparisons on the NEU-DET dataset, it is demonstrated that the mAP value of the YOLOv5s-FCS network reaches 0.747, representing an improvement of 8.3% compared to the original YOLOv5s network, 11.8% compared to the YOLOv3 network, 4.2% compared to the YOLOXs network, and 1.4% compared to the YOLOv6s network, thus demonstrating the feasibility and effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

周孟然,王昊男,高立鹏,等. 基于YOLOv5s-FCS的钢材表面缺陷检测[J]. 科学技术与工程, 2024, 24(14): 5901-5910.
Zhou Mengran, Wang Haonan, Gao Lipeng, et al. YOLOv5s-FCS Based Steel Surface Defect Detection Study[J]. Science Technology and Engineering,2024,24(14):5901-5910.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-19
  • 最后修改日期:2024-02-20
  • 录用日期:2023-09-27
  • 在线发布日期: 2024-05-30
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知