基于RLLE算法的脑力负荷分类研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R857

基金项目:


Research on mental load classification based on RLLE algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着人工智能领域技术的不断发展,脑机接口(Brain-Computer Interface,BCI)吸引了更多学者的关注。实时监测高强度脑力工作者的脑力负荷水平并其任务做出动态调整是保护国家财产和操作人员安全的重要手段。研究表明由脑电图(Electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。传统的主成分分析(Principal Component Analysis,PCA)算法会损失部分非线性特征。局部线性嵌入(Locally Linear Embedding,LLE)是常用的非线性降维算法,但该算法对噪声的敏感性高,降维结果受参数影响较大。稳健局部线性嵌入算法RLLE(Robust Locally Linear Embedding),在LLE优化权重矩阵时添加了正则项优化,不仅增强了模型的抗噪能力,也解决了解模型过程中可能会出现的矩阵病态和奇异性问题。该算法中的参数k在使用时经常选取较小的值以更好地捕捉数据集的局部结构,并大大减少了模型的计算时间。但脑电数据具有维数高,复杂度高的特点。选取小的k值不仅会导致模型对噪声异常敏感,也会使模型忽略重要的大邻域结构从而影响降维结果的准确性。本实验在使用该算法时,结合模型精度和计算时间选取了更合理的k值区间,使模型在保持高效的同时具有更强的抗干扰能力,并可以提供更全面的信息来描述数据集,使得嵌入结果更加准确。实验结果表明,经过RLLE降维后的数据使用支持向量机(Support Vector Machine, SVM)分类精度普遍高于经过PCA的降维方式,具有更强的抗干扰能力。

    Abstract:

    In recent years, with the continuous development of artificial intelligence technology, Brain-Computer Interface (BCI) has attracted more and more scholars' attention. Real-time monitoring of mental load level of high-intensity mental workers and dynamic adjustment of their tasks is an important means to protect national property and the safety of operators. A study shows that the characteristic power spectrum density extracted by Electroencephalogram (EEG) is sensitive to the changes of mental load, but its dimension is too high, leading to data disaster. Traditional Principal Component Analysis (PCA) algorithm will lose some nonlinear features. Locally Linear Embedding (LLE) is a common nonlinear dimension reduction algorithm, but the algorithm is highly sensitive to noise and the result of dimension reduction is greatly affected by parameters. The Robust Locally Linear Embedding algorithm (RLLE) adds regular term optimization when LLE optimizes the weight matrix, which not only enhances the anti-noise ability of the model, but also solves the problem of matrix sickness and singularity that may appear in the process of understanding the model. Parameter k in this algorithm is often used with a smaller value to better capture the local structure of the data set and greatly reduce the calculation time of the model. However, EEG data has the characteristics of high dimension and complexity. Selecting a small k value will not only cause the model to be abnormally sensitive to noise, but also make the model ignore important large neighborhood structure, thus affecting the accuracy of dimension reduction results. In this experiment, when using this algorithm, a more reasonable interval of k value is selected in combination with model accuracy and calculation time, so that the model has stronger anti-interference ability while maintaining efficiency, and can provide more comprehensive information to describe the data set, so that the embedded results are more accurate. The experimental results show that the classification accuracy of data after RLLE dimension reduction using SVM is generally higher than that after PCA dimension reduction, which has stronger anti-interference ability.

    参考文献
    相似文献
    引证文献
引用本文

苏峥,曲洪权,柳长安,等. 基于RLLE算法的脑力负荷分类研究[J]. 科学技术与工程, 2024, 24(14): 5760-5766.
Su Zheng, Qu Hongquan, Liu Changan, et al. Research on mental load classification based on RLLE algorithm[J]. Science Technology and Engineering,2024,24(14):5760-5766.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-28
  • 最后修改日期:2024-03-13
  • 录用日期:2023-09-27
  • 在线发布日期: 2024-05-30
  • 出版日期:
×
喜报!《科学技术与工程》入选国际著名数据库《工程索引》(EI Compendex)!
《科学技术与工程》“智能机器人关键技术”专栏征稿启事暨“2025智能机器人关键技术大会”会议通知