基于形变长短期记忆网络的换道意图预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U461.91

基金项目:

广东省自然科学基金(2021A1515011587);


Lane-Changing Intention Prediction Based on MOGRIFIER LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    混行交通下的自动驾驶车辆需具备换道意图预测能力来保障行驶安全。为尽早预测车辆换道意图,提出一种基于形变长短期记忆(Mogrifier LSTM)网络的换道意图预测模型。首先采用S-G (Savitzky?Golay)滤波器对自然驾驶数据集NGSIM(Next Generation Simulation)进行降噪筛选,按向左换道、向右换道、直线行驶对不同时间长度的轨迹序列标注,选取车辆运动信息与环境信息输入模型,最后采用softmax函数进行意图分类。试验结果表明,在不同预判时间下,模型准确率均高于SVM、LSTM模型,且越接近换道点预测准确率越高,在1.0s、2.5s时预测准确率分别为93.83%与81.30%。提出的模型具有良好的准确性与预判性,能为自动驾驶车辆尽早识别换道意图提供技术支持。

    Abstract:

    Automatic driving vehicles need to have the ability to predict the intentions of changing lanes to ensure driving safety in mixed traffic.In order to predict the intention as early as possible, a prediction model based on Morgrifier LSTM network is proposed. First, the S-G (Savitzky?Golay) filter is used to filter the noise reduction of the natural driving data set NGSIM (Next Generation Simulation), and the track sequence of different lengths of time is marked by changing lane to the left, right, and driving straightly.Select the input model of vehicle motion information and environmental information. Finally, the softmax function is used to classify the intention. The result shows that the prediction accuracy of the model is higher than SVM and LSTM under different prediction times, and the closer to the lane-changing point, the higher the prediction accuracy. At 1.0 s and 2.5 s, the prediction accuracy is 93.83% and 81.30% respectively. The proposed model has pleasurable accuracy and predictability. It can provide technical support for automatic driving vehicles to identify lane-changing intention as early as possible.

    参考文献
    相似文献
    引证文献
引用本文

田晟,胡啸. 基于形变长短期记忆网络的换道意图预测[J]. 科学技术与工程, 2024, 24(11): 4769-4775.
Tian Sheng, Hu Xiao. Lane-Changing Intention Prediction Based on MOGRIFIER LSTM[J]. Science Technology and Engineering,2024,24(11):4769-4775.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-17
  • 最后修改日期:2024-01-04
  • 录用日期:2023-08-10
  • 在线发布日期: 2024-05-10
  • 出版日期:
×
喜报!《科学技术与工程》继续入选“中国科技核心期刊”
亟待确认版面费归属稿件,敬请作者关注