基于灰色理论的盾构竖向姿态预测模型研究
DOI:
作者:
作者单位:

1.北方工业大学 土木工程学院;2.清华大学 水沙科学与水利水电工程国家重点试验室;3.广东珠三角城际轨道交通有限公司;4.中航建设集团有限公司

作者简介:

通讯作者:

中图分类号:

U455.43

基金项目:

国家重点研发项目(2018YFC1504801,2018YFC1504902);国家自然科学(51522903,51774184);清华大学水沙科学与水利水电工程国家重点实验室资助(2019-KY-03);北方工业大学毓杰项目(216051360020XN199/006);北方工业大学城市地下空间智能建造关键技术(110051360022XN108-19)


Research on Prediction Model of Shield Vertical Posture Based on Grey Theory
Author:
Affiliation:

1.School of Civil Engineering,North China University of Technology;2.Guangdong Pearl River Delta Intercity Rail Transit Corporation Limited,Guangzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于盾构机的滞后性,盾构姿态很难得到及时有效的调整。为解决盾构俯仰角度难以调控等问题,提出一种基于灰色理论下长短时记忆(Long Short-term memory, LSTM)与支持向量回归(Support Vector Regression,SVR)算法的盾构竖向姿态组合预测模型。将盾构原始数据利用灰色理论方法分析了盾构掘进参数与地层参数对盾构俯仰角的灰色关联程度,剔除灰色关联度低于0.8的冗余参数后进行小波变换(Wavelet Transform,WT)去噪处理,将处理后的俯仰角作为输出变量,其余参数作为输入变量,得到盾构竖向姿态组合预测模型,并与全部参数作为输入层的组合预测模型(AWT-LSTM-SVR)和其他两个模型进行对比,通过珠江三角洲水资源配置工程输水隧道工程实例验证其准确性。结果表明,WT-LSTM-SVR组合模型预测精度最高,WT-LSTM模型预测精度最差;另一方面,WT-LSTM-SVR模型预测精度大于AWT-LSTM-SVR模型预测精度,且WT-LSTM-SVR组合预测模型的平均绝对误差百分比为1.28%,误差降低了2.9%;R20.93,模型拟合程度提高了0.51。说明提出的WT-LSTM-SVR组合预测模型可以有效的将两个单一模型结合,并且灰色理论分析可以提升模型的预测精度,使组合模型的泛化能力与准确性进一步加强,为其它盾构竖向姿态提前调整提供一定参考价值。

    Abstract:

    Due to the hysteresis of the shield machine, it is difficult to adjust the shield attitude in time. In order to solve the problem that the shield pitch angle is difficult to be adjusted, a combined prediction model of shield vertical attitude based on Long Short-term memory (LSTM) and Support Vector Regression (SVR) algorithm in gray theory is proposed. The original shield data were analyzed by the gray theory method to determine the gray correlation between shield tunneling parameters and stratigraphic parameters on the shield pitch angle, and the redundant parameters with the gray correlation degree lower than 0.8 were removed and subjected to wavelet transform (WT) denoising. The prediction model is compared with the combined prediction model with all parameters as input layers (AWT-LSTM-SVR) and two single prediction models, and its accuracy is verified by the example of the water transmission tunnel of the Pearl River Delta Water Resources Allocation Project. The results show that the combined WT-LSTM-SVR model has the best prediction effect and the WT-LSTM model has the worst prediction effect; on the other hand, the prediction accuracy of the WT-LSTM-SVR model is greater than that of the AWT-LSTM-SVR model, and the average absolute error percentage of the combined WT-LSTM-SVR prediction model is 1.28%, with an error reduction of 2.9% The proposed combined WT-LSTM-SVR prediction model can effectively combine two single models, and the gray theory analysis can improve the prediction accuracy of the model, which further strengthens the generalization ability and accuracy of the combined model and provides some reference value for other shield vertical attitude adjustment in advance.

    参考文献
    相似文献
    引证文献
引用本文

柳宗旭,满轲,刘晓丽,等. 基于灰色理论的盾构竖向姿态预测模型研究[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-02
  • 最后修改日期:2023-06-13
  • 录用日期:2023-06-28
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注