基于验证集辅助的脑电信号包裹式降维
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R857

基金项目:


Research on enveloped dimensionality reduction of eeg signals based on verification set
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当今时代信息技术的高速发展促使人们对人机交互领域投以更多的目光,随时监测操作者脑力负荷情况并依此对操作者的任务工作量进行调整,在当下有着重要意义。有研究表明,脑电信号功率谱密度对于脑力负荷分类任务较为适用,但脑电特征维数较高,极易出现维度灾难。目前机器学习中降维方面应用最广泛的算法为主成分分析(PCA),本课题针对主成分分析在脑电信号分类上的不适应性和支持向量机(SVM)对特征间关系的敏感性,提出了基于PCA-SVM与逐阶枚举法的包裹式降维方法,在特征工程阶段引入固定验证集概念辅助包裹式降维,以验证集精度为指标调整特征工程方案,以此提高数据降维后的可分性。由于引入了监督学习概念,实验结果表明,基于PCA-SVM与逐阶枚举法降维过后的数据分类精度要普遍高于只依靠传统PCA的降维方式,以此为高维生物电数据降维提供了新思路。

    Abstract:

    The rapid development of information technology in today's era urges people to pay more attention to the field of human-computer interaction. It is of great significance to monitor the mental load of operators at any time and adjust the workload of operators according to this. Some studies have shown that the power spectral density of EEG signals is more suitable for the task of mental load classification, but the feature dimension of EEG is high, which is prone to dimensional disasters. At present, principal component analysis (PCA) is the most widely used algorithm in dimension reduction in machine learning. Aiming at the unadaptability of PCA in EEG signal classification and the sensitivity of SVM to the relationship between features, this paper proposes a wrapped dimension reduction method based on PCA-SVM and stepwise enumeration method. In the feature engineering stage, the concept of fixed verification set is introduced to assist wrapped dimension reduction, and the feature engineering scheme is adjusted with the accuracy of verification set as an index, So as to improve the separability of data after dimensionality reduction. Due to the introduction of the concept of supervised learning, the experimental results show that the accuracy of data classification after dimensionality reduction based on PCA-SVM and step-by-step enumeration is generally higher than that based on traditional PCA, which provides a new idea for dimensionality reduction of high-dimensional bioelectric data.

    参考文献
    相似文献
    引证文献
引用本文

张杰,曲洪权,柳长安,等. 基于验证集辅助的脑电信号包裹式降维[J]. 科学技术与工程, 2023, 23(30): 12835-12841.
Zhang Jie, Qu Hongquan, Liu Changan, et al. Research on enveloped dimensionality reduction of eeg signals based on verification set[J]. Science Technology and Engineering,2023,23(30):12835-12841.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-21
  • 最后修改日期:2023-08-01
  • 录用日期:2023-04-12
  • 在线发布日期: 2023-11-15
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注