基于人工智能的油田自动化计量仪表故障诊断方法
DOI:
作者:
作者单位:

中国石油大学(华东)

作者简介:

通讯作者:

中图分类号:

TE937

基金项目:

中石化胜利油田重点研发项目(320117)


Research on Fault Diagnosis Method of Oilfield Automatic Measuring Instrument
Author:
Affiliation:

China University of Petroleum

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    油田自动化计量仪表在长时间运行后受工况、环境等因素影响,会产生漂移、示值错误、卡死等故障,然而现阶段油田仍依靠于人工送检或现场经验的方式进行仪表故障甄别。本文通过分析仪表实时生产数据,研究油田复杂环境下仪表故障的表征参数,通过数据驱动的方式基于时间序列搭建了一种基于Transformer的自动化仪表故障诊断模型。对比实验结果表明,此模型的准确率、召回率和F1分数分别为93.4%、96.5%、95.3%,其性能及预测效果更佳,并且将该模型在现场实际应用,其诊断准确率能达到92.8%,证明该模型能有效的适用于油田自动化仪表的故障诊断。

    Abstract:

    In order to solve problems such as drift, indication error, and jamming caused by factors such as working conditions and environment after long-term operation of oilfield automatic metering instruments. And the diagnosis of instrument failures in oil fields still relies on manual inspection or on-site experience. The real-time production data of the instrument is analyzed, and the characterization parameters of instrument faults in complex environments are studied in this thesis. And a Transformer based fault diagnosis model for automated instruments is built based on time series in a data driven manner. The comparative experimental results show that the accuracy, recall, and F1 scores of this model are 93.4%, 96.5%, and 95.3%, respectively, and its performance and prediction effect are better, and the diagnostic accuracy rate in field application can reach 92.8% when applied in the field, it is concluded that this model can be effectively applied to fault diagnosis of oilfield automation instruments.

    参考文献
    相似文献
    引证文献
引用本文

万勇,舒顺强,戴永寿. 基于人工智能的油田自动化计量仪表故障诊断方法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-04-04
  • 录用日期:2023-04-09
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注