应用改进狼群算法优化模糊聚类实现点云数据的区域分割
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2020K027);山西省自然科学基金(202203021211172),


Region segmentation of point cloud data based on improved Wolf pack algorithm optimization fuzzy clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模糊C-均值聚类算法用于点云分割时对初始值敏感且易于陷入局部最优,导致点云分割效果不理想,不稳定的问题。提出一种基于曲率约束的改进狼群算法优化模糊C-均值聚类的混合算法(IWPAFCM)。该算法首先在狼群算法中引入佳点集初始化种群分布;然后利用自适应步长简化参数设定、平衡寻优与收敛时间;进一步应用交互策略增强狼群的内部交流,提升狼群全局寻优的能力;最后对头狼加入高斯扰动机制使其具有跳出局部最优的能力,将IWPA得到的聚类中心作为模糊聚类的初始值进行迭代,由此得到准确的聚类中心。在此基础上,基于点云的法矢量和曲率对点云之间的距离进行定义并替换传统欧式距离,实现了理想的点云分割效果。以ModelNet40公开数据集中Chair和Stool点云模型和实测点云机械零件和汽车覆盖件点云模型为例对算法可行性进行验证,并与FCM、FAFCM、WPAFCM和MACWPAFCM算法进行对比。结果表明,对于四种点云模型,本文算法相比四种对比算法在以数值高为优的VPC聚类性能指标上平均提高0.4%-11.95%,在以数值低为优的适应度函数值Jm、VPE和VXB聚类指标上分别平均减少0.2%-11.97%、0.65%-7.35%、0.3%-19.47%,在两种ModelNet40点云模型上平均迭代次数减少8-21次,在两种实测点云模型上平均迭代次数减少39-57次,表明本文算法收敛速度快,迭代次数少,聚类效果佳,具有更高的聚类准确性和更好的综合性能。

    Abstract:

    Aiming at the problem that fuzzy C-means clustering algorithm is sensitive to initial value and easy to fall into local optimal when used for point cloud segmentation, resulting in unsatisfactory and unstable point cloud segmentation effect. An improved Wolf pack algorithm based on curvature constraint is proposed to optimize fuzzy C-mean clustering(IWPAFCM). In this algorithm, a good point set is introduced into the Wolf pack algorithm to initialize the population distribution. Then, adaptive step size is used to simplify parameter setting, balance optimization and convergence time. The interaction strategy was further used to enhance the wolves' internal communication and improve the wolves' ability of global optimization. Finally, the Gaussian perturbation mechanism was added to the Wolf to make it have the ability to jump out of the local optimal. The clustering center obtained by IWPA was used as the initial value of fuzzy clustering for iteration, and the accurate clustering center was obtained. On this basis, the distance between point clouds is defined based on the normal vector and curvature of point clouds and the traditional Euclidean distance is replaced to achieve the ideal point cloud segmentation effect. The Chair and Stool point cloud model and the measured point cloud model of mechanical parts and automobile covering parts in ModelNet40 open data set were taken as examples to verify the feasibility of the algorithm, and compared with FCM、FAFCM、WPAFCM and MACWPAFCM algorithms. The results show that for the four point cloud models, compared with the four comparison algorithms, the proposed algorithm has an average improvement of 0.4% to 11.95% in the clustering performance index VPC with high value as the best. In terms of fitness function value Jm、VPE和VXB clustering index, and fitness function value with low value as the optimal value, the average number of iterations is reduced by 0.2%-11.97%, 0.65%-7.35% and 0.3%-19.47% respectively, and the average number of iterations on the two ModelNet40 point cloud models is reduced by 8-20 times. The average number of iterations on the two measured point cloud models is reduced by 39-57 times, indicating that the proposed algorithm has fast convergence speed, few iterations, good clustering effect, higher clustering accuracy and better comprehensive performance.

    参考文献
    相似文献
    引证文献
引用本文

张佳琦,王建民. 应用改进狼群算法优化模糊聚类实现点云数据的区域分割[J]. 科学技术与工程, 2023, 23(30): 13002-13013.
Zhang Jiaqi, Wang Jianmin. Region segmentation of point cloud data based on improved Wolf pack algorithm optimization fuzzy clustering[J]. Science Technology and Engineering,2023,23(30):13002-13013.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-03-10
  • 录用日期:2023-03-18
  • 在线发布日期: 2023-11-15
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注
《科学技术与工程》入选维普《中文科技期刊数据库》自然科学类期刊月度下载排行榜TOP10