基于局部信息增强注意力机制的网络流量预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家电网公司总部科技项目(5700-202116378A-0-0-00)


Network Traffic Prediction Based on Local Information Enhanced Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测网络中设备的流量状态对网络测量和管理具有重要的意义,有助于进一步提高网络服务质量和用户体验质量。然而,由于网络流量具有强烈的非线性和不确定性使得传统的统计方式或者机器学习方法很难获得较好的预测效果。为了进一步提升网络流量预测精度,设计实现了一种局部上下文信息增强的注意力机制,通过卷积计算将输入转换为Q和K,从微观角度对时间序列进行解释,提高了注意力机制的局部感知能力。进而将提出的注意力机制分别与长短期记忆人工神经网络(LSTM)和门控循环单元(GRU)两个时序预测模型相结合并将结合后的模型用于某运营商提供的两个不同网络流量数据集进行网络设备流量预测。实验结果表明基于局部上下文信息增强注意力机制的预测模型具有更好的预测效果。

    Abstract:

    Accurately predicting the traffic status of devices in the network is of great significance for network measurement and management, which is helpful to further improve the quality of network service and user experience. However, due to the strong nonlinearity and uncertainty of network traffic, it is still difficult for traditional statistical methods or machine learning methods to obtain better prediction results. In order to further improve the accuracy of network traffic prediction, a local context information enhanced attention mechanism is designed and implemented. The input sequence is converted into Q and K through convolution calculation. So, the time series can be interpreted from a microscopic perspective, which improves the local awareness of the attention mechanism. Furthermore, the proposed attention mechanism is combined with two time series prediction models respectively, Short term Memory Artificial Neural Network (LSTM) and Gated Loop Unit (GRU), and then the two combined models are used for two different network traffic data sets provided by an operator to predict the network equipment traffic. The experimental results show that the prediction models based on local context information enhanced attention mechanism have better prediction effect.

    参考文献
    相似文献
    引证文献
引用本文

何迎利,胡光宇,张浩,等. 基于局部信息增强注意力机制的网络流量预测[J]. 科学技术与工程, 2023, 23(30): 13014-13022.
He Yingli, Hu Guangyu, Zhang Hao, et al. Network Traffic Prediction Based on Local Information Enhanced Attention Mechanism[J]. Science Technology and Engineering,2023,23(30):13014-13022.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-11
  • 最后修改日期:2023-07-23
  • 录用日期:2023-03-29
  • 在线发布日期: 2023-11-15
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注