基于随机森林改进的Raft一致性算法
DOI:
作者:
作者单位:

1.江西农业大学计算机与信息工程学院;2.江西农业大学 江西省高等学校农业信息技术重点实验室

作者简介:

通讯作者:

中图分类号:

TP3-05

基金项目:

国家重点研发计划课题(2020YFD1100603);江西省自然科学(20212BAB202015);中央引导地方科技发展专项资金项目(20221ZDF04048);


Improved Raft Consistency Algorithm Based on Random Forest
Author:
Affiliation:

School of Computer and Information Engineering, Jiangxi Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统Raft算法存在候选者节点发生抢票,造成异常选举发生的问题,提出一种基于随机森林改进的获权节点Raft算法。首先在原始Raft算法中增添获权属性,并且设定只有获权节点才具备候选资格;其次引入随机森林算法,对节点的获权属性进行分类,即判定该节点是否为优选节点或普通节点,再从中选取优选节点组成主共识组;最后,在主共识组中采用评分排名方法将得分最高的优选节点设置为获权节点。该算法实验结果表明:改进的Raft算法不仅避免了异常选举的发生,并且提升了其选举效率。

    Abstract:

    In view of the issue that the traditional Raft algorithm has candidate nodes grabbing votes, causing abnormal elections to occur, a Raft algorithm based on random forest is proposed to improve the authorized nodes. First, the authorized attributes are added to the original Raft algorithm, and only the authorized nodes are set to be eligible for candidacies; secondly, a random forest algorithm is introduced to classify the authorized attributes of the nodes, that is, to determine whether the node is an improved node or an ordinary node, and then select the improved nodes to form the main consensus group; finally, the scoring ranking method is used in the main consensus group to set the improved node with the highest score as the authorized node. The experimental results of this algorithm show that the improved Raft algorithm not only avoids the occurrence of abnormal elections, but also improves its election efficiency.

    参考文献
    相似文献
    引证文献
引用本文

唐豪,易文龙,殷华,等. 基于随机森林改进的Raft一致性算法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-08
  • 最后修改日期:2023-04-25
  • 录用日期:2023-05-10
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注