基于密集连接机制的无线信号调制识别
DOI:
作者:
作者单位:

西安科技大学通信与信息工程学院

作者简介:

通讯作者:

中图分类号:

TN911.3

基金项目:

国家自然科学基金联合(U19B2015);陕西省重点研发计划项目(2019ZDLSF07-06)


Radio Signal Modulation Identification Based on Dense Connection Mechanism
Author:
Affiliation:

1.School of Communication and Information Engineering,Xi'2.'3.an University of Science and Technology,Xi'4.an 710054 China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    为提高复杂信道环境下无线通信系统对调制信号的检测识别能力,以及针对当前调制识别方法存在的模型复杂、计算量大、输入数据特征不完备等问题。本文提出一种改进的深度学习算法模型,对真实无线环境下的九种常见调制信号进行识别研究。该算法通过对原始的同相正交(IQ)数据进行幅度相位计算,以此增加模型输入数据的特征信息,采用改进的密集神经网络(DenseNet)对常见调制信号进行识别分类。实验结果表明:在相同的训练数据样本中,相比其他深度学习调制识别算法,本文所提算法性能最优。在0dB时,DenseNet平均识别率达到84.6%。改进的IQ输入数据明显提高了无线信号的检测识别率,在信噪比为-10dB和-5dB时,调制信号的识别率提高了10%。

    Abstract:

    In order to improve the detection and recognition ability of wireless communication systems in complex channel environments, and the problems of complex models, large calculation amounts, and incomplete input data characteristics. We propose an improved deep learning algorithm model to identify nine common modulated signals in real wireless environments. The algorithm calculates the amplitude and phase of the original in-phase quadrature (IQ) data to increase the characteristic information of the input data of the model and uses an improved dense neural network (DenseNet) to identify and classify common modulation signals. The experimental results show that the proposed algorithm has the best performance compared with other deep learning modulation recognition algorithms in the same training data samples. At 0dB, the average recognition rate of DenseNet reaches 84.6%. The improved IQ input data significantly improves the detection and recognition rate of the wireless signal. When the SNR is -10dB and -5dB, the recognition rate of the modulated signal is increased by 10%.

    参考文献
    相似文献
    引证文献
引用本文

王安义,李立. 基于密集连接机制的无线信号调制识别[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-26
  • 最后修改日期:2022-09-25
  • 录用日期:2022-09-29
  • 在线发布日期:
  • 出版日期:
×
《科学技术与工程》影响力指数稳步提升
亟待确认的版面费信息