基于自适应混合高斯模型和四帧差分的运动目标检测算法
DOI:
作者:
作者单位:

1.中国人民武装警察部队工程大学;2.中国人民武装警察部队工程大学,信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

武警工程大学科研创新团队课题(KYTD201803)


Moving Object Detection Algorithm Based on Adaptive Gaussian Mixture Model and Four Frame Difference
Author:
Affiliation:

Engineering University of PAP

Fund Project:

Scientific Research Innovation Team of Engineering University of PAP named as "The theory and its application of PAP C4ISR"(No.KYTD201803)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际场景中运动目标检测存在光照变化、目标短暂遮挡及边缘特征信息缺失的问题,提出一种基于自适应学习率的混合高斯模型和改进四帧差分的目标检测算法。采用基于自适应学习率的混合高斯模型,有效解决传统模型中鬼影、误检现象;其次,利用改进的四帧差分法克服环境光照影响、运动遮挡问题,并利用Canny算法对目标进行边缘提取补充边缘信息;最后,对三者结果进行或运算进而得到最终检测结果。实验结果表明,该算法精准率可达88.7%,召回率可达92.1%,精准率和召回率的调和平均值可达90.4%,相比传统混合高斯模型、四帧差分法和文献中的方法,均达到最优结果;且处理单帧图像所用时间为24.3ms,在保证实时性的基础上,能够较精确提取前景运动目标,具有一定抗干扰能力。

    Abstract:

    Aiming at the problems of light change, temporary occlusion and edge feature missing in moving object detection in real scenes, a mixed Gaussian model based on adaptive learning rate and an improved four frame difference target detection algorithm are proposed. The mixed Gaussian model based on adaptive learning rate is adopted to effectively solve the ghost and false detection phenomena in the traditional model; Secondly, the improved four frame difference method is used to overcome the influence of ambient light and motion occlusion, and the Canny algorithm is used to extract the edge of the target to supplement the edge information; Finally, the final detection result is obtained by "OR" operation of the three results. The experimental results show that the accuracy rate of the algorithm can reach 88.7%, the recall rate can reach 92.1%, and the harmonic average of the accuracy rate and recall rate can reach 90.4%. Compared with the traditional Gaussian mixture model, four frame difference method and the methods in the literature, the algorithm achieves the optimal results; The processing time of a single frame image is 24.3ms. On the basis of ensuring real-time, it can accurately extract foreground moving objects, and has certain anti-interference ability.

    参考文献
    相似文献
    引证文献
引用本文

周彤彤,郑璐,彭月平,等. 基于自适应混合高斯模型和四帧差分的运动目标检测算法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-26
  • 最后修改日期:2022-10-26
  • 录用日期:2022-11-02
  • 在线发布日期:
  • 出版日期:
×
亟待确认版面费归属稿件,敬请作者关注