首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|证明资料|样刊邮寄查询|常见问题解答|联系我们
李新,吴迎年,李睿. 基于稳态视觉诱发电位的脑电信号分类算法比较[J]. 科学技术与工程, 2021, 21(19): 8106-8112.
Li Xin,Wu Yingnian,Li Rui.Comparison research of EEG signal classification algorithms based on SSVEP[J].Science Technology and Engineering,2021,21(19):8106-8112.
基于稳态视觉诱发电位的脑电信号分类算法比较
Comparison research of EEG signal classification algorithms based on SSVEP
投稿时间:2021-01-05  修订日期:2021-04-24
DOI:
中文关键词:  稳态视觉诱发电位  滤波器组典型相关分析  任务相关成分分析  分类准确率
英文关键词:steady state visual evoked potential (SSVEP)  filter bank canonical correlation analysis (FBCCA)  task-related component analysis (TRCA)  classification accuracy
基金项目:促进高校内涵发展-应急攻关项目(5212010976);国家重点研发计划(2020YFB1708200);2019科技部高端专家引进项目(G20190201031);北京信息科技大学2019年教改重点资助项目(2019JGZD02);2019年北京高等教育本科教学改革创新项目(5112010813);北京信息科技大学促进高校内涵发展科研平台师资补充经费(5112011144)
        
作者单位
李新 北京信息科技大学
吴迎年 北京信息科技大学
李睿 北京信息科技大学
摘要点击次数: 191
全文下载次数: 48
中文摘要:
      基于稳态视觉诱发电位(SSVEP)的脑-机接口(BCI)系统具有分类准确率高、用户不用长时间训练等优点而广受关注。如何高效地对SSVEP信号频率识别而实现更好的分类效果是SSVEP-BCI的核心问题。本文采用滤波器组典型相关分析(FBCCA)与任务相关成分分析(TRCA)对SSVEP 信号分类比较研究,探讨了两种方法在数据长度、子带数以及通道数对SSVEP信号分类效果的影响。35位被试者的数据表明:在数据长度小、时间短的情况下,TRCA具有更高的分类准确率,且子带数设置为5时,分类准确率达到最大。通道数越多分类准确率越高,但是通道个数较少时,TRCA分类效果明显优于FBCCA。研究为SSVEP脑电数据有效性分析以及提高基于SSVEP的脑电信号分类准确率提供了新的思路。
英文摘要:
      The steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) has attracted much attention due to its advantages such as high classification accuracy and little user training. How to effectively identify the SSVEP signal frequency and achieve better classification effect is the key issue of SSVEP-BCI. In this paper,filter bank canonical correlation analysis and task-related component analysis are used to compare SSVEP signal classification, and the effects of the two methods on the SSVEP signal classification effect are discussed in terms of data length, sub-band numbers and channel numbers. The data of 35 subjects show that the TRCA has higher classification accuracy in the case of small data length and short time, and the classification accuracy reaches the maximum when the number of sub-band is set to 5. The more channels, the higher the classification accuracy, however, when the number of channel is fewer, the classification performance of TRCA is better than FBCCA. The research provides a new idea to analyze the validity of the EEG data and improve the classification accuracy of EEG signal based on SSVEP.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第44315590位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号