首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|证明资料|样刊邮寄查询|常见问题解答|联系我们
李琪,屈峰涛,何璟彬,等. 基于PSO-BP的钻井机械钻速预测模型[J]. 科学技术与工程, 2021, 21(19): 7984-7990.
Li Qi,Qu Fengtao,He Jingbin,et al.Rate of Penetration for Drilling Prediction Model Based on PSO-BP[J].Science Technology and Engineering,2021,21(19):7984-7990.
基于PSO-BP的钻井机械钻速预测模型
Rate of Penetration for Drilling Prediction Model Based on PSO-BP
投稿时间:2020-11-03  修订日期:2021-01-30
DOI:
中文关键词:  机械钻速(ROP)  钻速预测  优化钻井  BP神经网络  粒子群算法(PSO)
英文关键词:Rate of Penetration(ROP)  ROP prediction  Optimize drilling  BP neural network  Particle Swarm Optimization (PSO)
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
                 
作者单位
李琪 西安石油大学石油工程学院
屈峰涛 西安石油大学石油工程学院
何璟彬 川庆钻探工程有限公司长庆钻井总公司
王勇 中石油长庆油田分公司质量安全环保部
解聪 西安石油大学石油工程学院
王六鹏 西安石油大学石油工程学院
摘要点击次数: 135
全文下载次数: 50
中文摘要:
      机械钻速预测是优化钻进过程、提高钻井效率的关键技术,现有的计算模型主要建立在物理实验和理论分析的基础上,缺少对对钻井工程实测数据的应用,导致计算精度难以满足复杂的现场需求。基于此,提出一种人工智能算法与BP神经网络相结合的钻井机械钻速预测模型。首先,利用小波滤波方法对实测数据进行降噪处理,并依据互信息关联分析优选输入参数降低模型冗余。其次,利用PSO(Particle Swarm Optimization,粒子群优化算法)算法实现对BP神经网络初始权值、阈值的优化,建立机械钻速预测新模型,并将PSO-BP新模型与标准BP、BAS(Beetle Antennae Search,天牛须算法)-BP及GA(Genetic Algorithm,遗传算法)-BP等三种模型进行对比分析。最后,根据实际工况对PSO-BP钻井机械钻速预测模型进行模型评价。结果表明PSO-BP机械钻速预测模型不仅具有良好的预测精度,而且为钻进过程中提高机械钻速提供科学的参考。
英文摘要:
      The prediction of ROP is a key technology to optimize the drilling process and improve drilling efficiency. The existing calculation models are mainly based on physical experiments and theoretical analysis. The lack of application of measured data in drilling engineering makes the calculation accuracy difficult to meet the complexity On-site demand. Based on this, a new ROP prediction model combining artificial intelligence algorithm and BP neural network is proposed. First, the wavelet filtering method is used to reduce the noise of the measured data, and the input parameters are optimized according to the mutual information correlation analysis to reduce the model redundancy. Secondly, the PSO algorithm is used to optimize the initial weights and thresholds of the BP neural network, and establish a new model of ROP prediction. Finally, according to the actual data, the PSO-BP drilling speed prediction model is evaluated experimentally, and the new PSO-BP model is compared with the standard BP, BAS-BP and GA-BP models. The results show that the PSO-BP rate of penetration prediction model not only has a good prediction accuracy, but also provides a scientific reference for increasing the ROP during drilling.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第44253076位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号